⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 regression.cpp

📁 模糊聚類分析源碼。包含教學文件
💻 CPP
字号:
/*    Context       : Fuzzy Clustering Algorithms  Author        : Frank Hoeppner, see also AUTHORS file   Description   : implementation of class module Regression                    History       :      Comment       :     This file was generated automatically. DO NOT EDIT.  Copyright     : Copyright (C) 1999-2000 Frank Hoeppner    This program is free software; you can redistribute it and/or modify    it under the terms of the GNU General Public License as published by    the Free Software Foundation; either version 2 of the License, or    (at your option) any later version.    This program is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the    GNU General Public License for more details.    You should have received a copy of the GNU General Public License    along with this program; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA*//*  The University of Applied Sciences Oldenburg/Ostfriesland/Wilhelmshaven  hereby disclaims all copyright interests in the program package `fc'   (tool package for fuzzy cluster analysis) written by Frank Hoeppner.    Prof. Haass, President of Vice, 2000-Mar-10*/#ifndef Regression_SOURCE#define Regression_SOURCE/* configuration include */#ifdef HAVE_CONFIG_H/*//FILETREE_IFDEF HAVE_CONFIG_H*/#include "config.h"/*//FILETREE_ENDIF*/#endif// necessary includes#include "Regression.hpp"#include "TransMatrix.hpp"// data// implementationtemplate < class ANALYSIS >Regression< ANALYSIS >::Regression  (  Algorithm<ANALYSIS>* ap_alg  )  : mp_succ_alg(ap_alg)      {    }template < class ANALYSIS >Regression< ANALYSIS >::~Regression  (  )  {  FUNCLOG("~Regression");    delete mp_succ_alg;  }template < class ANALYSIS >voidRegression< ANALYSIS >::operator()  (  ANALYSIS& a_analysis  )  {  FUNCLOG("Regression");    //const int s( a_analysis.option().output_dimension() );  const int s(1);  const int p( a_analysis.option().data_dimension() );  const int c( a_analysis.option().number_prototypes() );  matrix_type yx[c];  matrix_type xx[c];  int i;  for (i=0;i<c;++i)    {    xx[i].adjust(p,p);    yx[i].adjust(p,s);    matrix_set_scalar(xx[i],0);    matrix_set_scalar(yx[i],0);    }  typename ANALYSIS::link_iter i_link(a_analysis.links().begin());  for (      typename ANALYSIS::data_iter i_data(a_analysis.data().begin());      i_data != a_analysis.data().end();      ++i_data      )    {    i=0;    for (        typename ANALYSIS::prot_iter i_prot(a_analysis.prototypes().begin());        i_prot != a_analysis.prototypes().end();        ++i_prot        )      {      const real_type u ( (*i_link).pow_membxweight() );      if (u!=0) // non-zero membership and weight        {        matrix_inc_scaled_product(xx[i],          u,(*i_data).datum(),transposed((*i_data).datum()));  /*      matrix_inc_scaled_product(yx[i],          u,(*i_data).result()[0],(*i_data).datum());  */        matrix_inc_scaled(yx[i],          u*(*i_data).result()[0],(*i_data).datum());        }      ++i_link; ++i;      }    }    i=0;    for (        typename ANALYSIS::prot_iter i_prot(a_analysis.prototypes().begin());        i_prot != a_analysis.prototypes().end();        ++i_prot        )      {      gauss_jordan(xx[i]);      matrix_set_product((*i_prot).coefficient(),xx[i],yx[i]);      ++i;      }     }// template instantiation#endif // Regression_SOURCE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -