⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node28.html

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.2//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>The Lyapunov spectrum</TITLE>
<META NAME="description" CONTENT="The Lyapunov spectrum">
<META NAME="keywords" CONTENT="TiseanHTML">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="TiseanHTML.css" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/TiseanHTML.css">
</HEAD>
<BODY bgcolor=ffffff LANG="EN" >
 <A NAME="tex2html354" HREF="node29.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node29.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html352" HREF="node26.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node26.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html348" HREF="node27.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node27.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html355" HREF="node29.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node29.html">Dimensions and entropies</A>
<B>Up:</B> <A NAME="tex2html353" HREF="node26.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node26.html">Lyapunov exponents</A>
<B> Previous:</B> <A NAME="tex2html349" HREF="node27.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node27.html">The maximal exponent</A>
<BR> <P>
<H2><A NAME="SECTION00072000000000000000">The Lyapunov spectrum</A></H2>
<P>
The computation of the full Lyapunov spectrum requires considerably more effort
than just the maximal exponent. An essential ingredient is some estimate of the
local Jacobians, i.e. of the linearized dynamics, which rules the growth of
infinitesimal perturbations. One either finds it from direct fits of local
linear models of the type <IMG WIDTH=120 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline7515" SRC="img119.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img119.gif">, such that the first row
of the Jacobian is the vector <IMG WIDTH=17 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6979" SRC="img61.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img61.gif">, and <IMG WIDTH=90 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline7519" SRC="img120.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img120.gif"> for
<IMG WIDTH=83 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7521" SRC="img121.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img121.gif">, where <I>m</I> is the embedding dimension. The <IMG WIDTH=17 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6979" SRC="img61.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img61.gif"> is given by
the least squares minimization <IMG WIDTH=190 HEIGHT=27 ALIGN=MIDDLE ALT="tex2html_wrap_inline7527" SRC="img122.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img122.gif">
where <IMG WIDTH=26 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline7529" SRC="img123.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img123.gif"> is the set of neighbors of <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6691" SRC="img38.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img38.gif">&nbsp;[<A HREF="citation.html#Eckmann" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#Eckmann">45</A>, <A HREF="citation.html#sano" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#sano">71</A>].  Or
one constructs a global nonlinear model and computes its local Jacobians by
taking derivatives. In both cases, one multiplies the Jacobians one by one,
following the trajectory, to as many different vectors <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline7533" SRC="img124.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img124.gif"> in tangent space
as one wants to compute Lyapunov exponents. Every few steps, one applies a
Gram-Schmidt orthonormalization procedure to the set of <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline7533" SRC="img124.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img124.gif">, and
accumulates the logarithms of their rescaling factors. Their average, in the
order of the Gram-Schmidt procedure, give the Lyapunov exponents in descending
order. The routine <a href="../dresden/lyap_spec.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/lyap_spec.html">lyap_spec</a> uses this method, which goes back to&nbsp;[<A HREF="citation.html#sano" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#sano">71</A>]
and&nbsp;[<A HREF="citation.html#Eckmann" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#Eckmann">45</A>], employing local linear fits. Apart from the problem of
spurious exponents, this method contains some other pitfalls: It <I>assumes</I>
that there exist well defined Jacobians, and does not test for their
relevance. In particular, when attractors are thin in the embedding space, some
(or all) of the local Jacobians might be estimated very badly. Then the whole
product can suffer from these bad estimates and the exponents are
correspondingly wrong. Thus the global nonlinear approach can be superior, if a
modeling has been successful, see Sec.&nbsp;<A HREF="node16.html#secpredict" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node16.html#secpredict"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>.
<P>
In Table&nbsp;<A HREF="node28.html#tabLyap1" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node28.html#tabLyap1"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> we show the exponents of the stroboscopic NMR
laser data in a three dimensional embedding as a function of the neighborhood
size.  Using global nonlinear models, we find the numbers given in the last
two rows. More material is discussed in&nbsp;[<A HREF="citation.html#KantzSchreiber" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#KantzSchreiber">2</A>]. The spread of
values in the table for this rather clean data set reflects the difficulty of
estimating Lyapunov spectra from time series, which has to be done with great
care. In particular, when the algorithm is blindly applied to data from a
random process, it cannot internally check for the consistency of the
assumption of an underlying dynamical system. Therefore a Lyapunov spectrum is
computed which now is completely meaningless.
<P>
<P><blockquote><A NAME="5717">&#160;</A>&nbsp;<BR>
<TABLE COLS=6 BORDER RULES=GROUPS cellpadding=5 width=80%>
<COL ALIGN=LEFT><COL ALIGN=CENTER><COL ALIGN=RIGHT><COL ALIGN=CENTER><COL ALIGN=CENTER><COL ALIGN=CENTER>
<TBODY>
<TR><TD colspan=3 VALIGN=BASELINE ALIGN=LEFT NOWRAP>
method </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> <IMG WIDTH=13 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7463" SRC="img113.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img113.gif"> </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7539" SRC="img126.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img126.gif"> </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7541" SRC="img127.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img127.gif"> </TD></TR>
</TBODY><TBODY>
<TR><TD VALIGN=BASELINE ALIGN=LEFT NOWRAP colspan=2>local linear           </TD><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP> <I>k</I>=20  </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> 0.32 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -0.40 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -1.13 </TD></TR>
<TR><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP COLSPAN=2> 
``</TD><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP> <I>k</I>=40  </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> 0.30 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -0.51 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -1.21 </TD></TR>
<TR><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP COLSPAN=2> 
``</TD><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP> <I>k</I>=160 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> 0.28 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -0.68 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -1.31 </TD></TR>
</TBODY><TBODY>
<TR><TD VALIGN=BASELINE ALIGN=LEFT NOWRAP COLSPAN=3>radial basis functions</TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> 0.27 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -0.64 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -1.31 </TD></TR>
<TR><TD VALIGN=BASELINE ALIGN=LEFT NOWRAP COLSPAN=3> 
polynomial</TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> 0.27 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -0.64 </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> -1.15 </TD></TR>
</TBODY></TABLE>
<p>
<STRONG>Table:</STRONG> <A NAME="tabLyap1">&#160;</A>
    Lyapunov exponents of the NMR laser data, determined with a
    three-dimensional embedding. The algorithms described in 
    Sec.&nbsp;<A HREF="node27.html#seclyapmax" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node27.html#seclyapmax"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> give <IMG WIDTH=104 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7549" SRC="img125.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img125.gif"> for the largest
    exponent. </blockquote>

<P>
<P>
The computation of the first part of the Lyapunov spectrum allows for some
interesting cross-checks. It was conjectured&nbsp;[<A HREF="citation.html#KaplanYorke" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#KaplanYorke">72</A>], and is found
to be correct in most physical situations, that the Lyapunov spectrum and the
fractal dimension of an attractor are closely related. If the expanding and
least contracting directions in space are continuously filled and only one
partial dimension is fractal, then one can ask for the dimensionality of a
(fractal) volume such that it is invariant, i.e. such that the sum of the
corresponding Lyapunov exponents vanishes, where the last one is weighted with
the non-integer part of the dimension:
<BR><A NAME="eqlyapKY">&#160;</A><IMG WIDTH=500 HEIGHT=42 ALIGN=BOTTOM ALT="equation5736" SRC="img128.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img128.gif"><BR> 
where <I>k</I> is the maximum integer such that the sum of the <I>k</I> largest exponents
is still non-negative. <IMG WIDTH=34 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7555" SRC="img129.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img129.gif"> is conjectured to coincide with the information
dimension.
<P>
The Pesin identity is valid under the same assumptions and allows to compute
the KS-entropy:
<BR><A NAME="eqlyapPesin">&#160;</A><IMG WIDTH=500 HEIGHT=43 ALIGN=BOTTOM ALT="equation5738" SRC="img130.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img130.gif"><BR><HR><A NAME="tex2html354" HREF="node29.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node29.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html352" HREF="node26.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node26.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html348" HREF="node27.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node27.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html355" HREF="node29.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node29.html">Dimensions and entropies</A>
<B>Up:</B> <A NAME="tex2html353" HREF="node26.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node26.html">Lyapunov exponents</A>
<B> Previous:</B> <A NAME="tex2html349" HREF="node27.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node27.html">The maximal exponent</A>
<P><ADDRESS>
<I>Thomas Schreiber <BR>
Wed Jan  6 15:38:27 CET 1999</I>
</ADDRESS>
</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -