⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node34.html

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.2//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Entropy estimates</TITLE>
<META NAME="description" CONTENT="Entropy estimates">
<META NAME="keywords" CONTENT="TiseanHTML">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="TiseanHTML.css" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/TiseanHTML.css">
</HEAD>
<BODY bgcolor=ffffff LANG="EN" >
 <A NAME="tex2html416" HREF="node35.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node35.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html414" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html410" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html417" HREF="node35.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node35.html">Testing for nonlinearity</A>
<B>Up:</B> <A NAME="tex2html415" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html">Information dimension</A>
<B> Previous:</B> <A NAME="tex2html411" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html">Information dimension</A>
<BR> <P>
<H3><A NAME="SECTION00082100000000000000">Entropy estimates</A></H3>
<P>
The correlation dimension characterizes the <IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6495" SRC="img3.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img3.gif"> dependence of the
correlation sum inside the scaling range. It is natural to ask what we can
learn form its <I>m</I>-dependence, once <I>m</I> is larger than <IMG WIDTH=19 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7885" SRC="img166.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img166.gif">. The number of
<IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6495" SRC="img3.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img3.gif">-neighbors of a delay vector is an estimate of the local probability
density, and in fact it is a kind of joint probability: All <I>m</I>-components of
the neighbor have to be similar to those of the actual vector simultaneously.
Thus when increasing <I>m</I>, joint probabilities covering larger time spans get
involved. The scaling of these joint probabilities is related to the
correlation entropy <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7893" SRC="img167.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img167.gif">, such that
<BR><A NAME="eqdimfullC2">&#160;</A><IMG WIDTH=500 HEIGHT=19 ALIGN=BOTTOM ALT="equation5956" SRC="img168.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img168.gif"><BR>
As for the scaling in <IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6495" SRC="img3.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img3.gif">, also the dependence on <I>m</I> is valid
only asymptotically for large <I>m</I>, which one will not reach due to the lack
of data points. So one will study <IMG WIDTH=40 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline7901" SRC="img169.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img169.gif"> versus <I>m</I> and try to extrapolate to
large <I>m</I>. The correlation entropy is a lower bound of the Kolmogorov Sinai
entropy, which in turn can be estimated by the sum of the positive Lyapunov
exponents.  The program <a href="../dresden/d2.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/d2.html">d2</a> produces as output the estimates of <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline7893" SRC="img167.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img167.gif">
directly, from the other correlation sum programs it has to be extracted by
post-processing the output.
<P>
The entropies of first and second order can be derived from the output of 
<a href="../wuppertal/c1.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/wuppertal/c1.html">c1</a> and <a href="../dresden/d2.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/d2.html">d2</a> 
respectively. An alternate means of obtaining these and the
other generalized entropies is by a box counting approach. Let <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6569" SRC="img20.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img20.gif"> be the
probability to find the system state in box <I>i</I>, then the order <I>q</I> entropy is
defined by the limit of small box size and large <I>m</I> of
<BR><A NAME="eqhq">&#160;</A><IMG WIDTH=500 HEIGHT=34 ALIGN=BOTTOM ALT="equation5961" SRC="img170.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img170.gif"><BR>   
To evaluate <IMG WIDTH=38 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline7917" SRC="img171.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img171.gif"> over a fine mesh of boxes in <IMG WIDTH=46 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline7919" SRC="img172.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img172.gif"> dimensions,
economical use of memory is necessary: A simple histogram would take 
<IMG WIDTH=45 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline7921"
SRC="img173.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img173.gif"> storage. Therefore the program <a href="../dresden/boxcount.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/boxcount.html">boxcount</a> implements
the mesh of boxes as a tree with <IMG WIDTH=33 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline7923" SRC="img174.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img174.gif">-fold branching points. The
tree is worked through recursively so that at each instance at most one
complete branch exists in storage. The current version does not implement
finite sample corrections to Eq.(<A HREF="node34.html#eqhq" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node34.html#eqhq"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>).
<P>
<HR><A NAME="tex2html416" HREF="node35.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node35.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html414" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html410" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html417" HREF="node35.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node35.html">Testing for nonlinearity</A>
<B>Up:</B> <A NAME="tex2html415" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html">Information dimension</A>
<B> Previous:</B> <A NAME="tex2html411" HREF="node33.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node33.html">Information dimension</A>
<P><ADDRESS>
<I>Thomas Schreiber <BR>
Wed Jan  6 15:38:27 CET 1999</I>
</ADDRESS>
</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -