⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node20.html

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.2//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Locally linear prediction</TITLE>
<META NAME="description" CONTENT="Locally linear prediction">
<META NAME="keywords" CONTENT="TiseanHTML">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="TiseanHTML.css" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/TiseanHTML.css">
</HEAD>
<BODY bgcolor=ffffff LANG="EN" >
 <A NAME="tex2html275" HREF="node21.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node21.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html273" HREF="node16.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node16.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html267" HREF="node19.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node19.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html276" HREF="node21.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node21.html">Global function fits</A>
<B>Up:</B> <A NAME="tex2html274" HREF="node16.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node16.html">Nonlinear prediction</A>
<B> Previous:</B> <A NAME="tex2html268" HREF="node19.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node19.html">Finding unstable periodic orbits</A>
<BR> <P>
<H2><A NAME="SECTION00054000000000000000">Locally linear prediction</A></H2>
<P>
If there is a good reason to assume that the relation <IMG WIDTH=89 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline6971" SRC="img59.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img59.gif"> is
fulfilled by the experimental data in good approximation (say, within 5%) for
some unknown <I>f</I> and that <I>f</I> is smooth, predictions can be improved by
fitting local linear models. They can be considered as the local Taylor
expansion of the unknown <I>f</I>, and are easily determined by minimizing
<BR><A NAME="eqpredictloclin1">&#160;</A><IMG WIDTH=500 HEIGHT=37 ALIGN=BOTTOM ALT="equation4924" SRC="img60.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img60.gif"><BR>
with respect to <IMG WIDTH=17 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6979" SRC="img61.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img61.gif"> and <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline6981" SRC="img62.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img62.gif">, where <IMG WIDTH=18 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline6983" SRC="img63.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img63.gif"> is the
<IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6495" SRC="img3.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img3.gif">-neighborhood of <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6691" SRC="img38.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img38.gif">, excluding <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6691" SRC="img38.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img38.gif"> itself, as before. Then,
the prediction is <IMG WIDTH=120 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline6991" SRC="img64.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img64.gif">. The minimization problem can
be solved through a set of coupled linear equations, a standard linear algebra
problem.  This scheme is implemented in <a href="../dresden/onestep.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/onestep.html">onestep</a>. For moderate noise levels
and time series lengths this can give a reasonable improvement over <a href="../dresden/zeroth.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/zeroth.html">zeroth</a>
and <a href="../wuppertal/predict.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/wuppertal/predict.html">predict</a>. Moreover, as discussed in Sec.<A HREF="node26.html#seclyap" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node26.html#seclyap"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>, these linear maps
are needed for the computation of the Lyapunov spectrum. Locally linear
approximation was introduced in&nbsp;[<A HREF="citation.html#Eckmann" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#Eckmann">45</A>, <A HREF="citation.html#fsid0" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#fsid0">46</A>]. We should note that the
straight least squares solution of Eq.(<A HREF="node20.html#eqpredictloclin1" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node20.html#eqpredictloclin1"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>) is not always
optimal and a number of strategies are available to regularize the problem if 
the matrix becomes nearly singular and to remove the bias due to the errors in
the ``independent'' variables. These strategies have in common that any
possible improvement is bought with considerable complication of the procedure,
requiring subtle parameter adjustments. We refer the reader to
Refs.&nbsp;[<A HREF="citation.html#kugiLL" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#kugiLL">51</A>, <A HREF="citation.html#jaeger" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#jaeger">52</A>] for advanced material.
<P>
In Fig.&nbsp;<A HREF="node20.html#figpredictINOnstep" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node20.html#figpredictINOnstep"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> we show iterated predictions of the
Poincar&#233; map data from the CO<IMG WIDTH=6 HEIGHT=11 ALIGN=MIDDLE ALT="tex2html_wrap_inline6701" SRC="img39.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img39.gif"> laser (Fig.&nbsp;<A HREF="node11.html#figdelayPoincare" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html#figdelayPoincare"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>) in a
delay representation (using <a href="../dresden/nstep.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/nstep.html">nstep</a> in two dimensions). The resulting data do
not only have the correct marginal distribution and power spectrum, but also
form a perfect skeleton of the original noisy attractor. There are
of course artefacts due to noise and the roughness of this approach,
but there are good reasons to assume that the line-like substructure
reflects fractality of the unperturbed system.
<P>
<P><blockquote><A NAME="4961">&#160;</A><IMG WIDTH=235 HEIGHT=223 ALIGN=BOTTOM ALT="figure836" SRC="img65.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img65.gif"><BR>
<STRONG>Figure:</STRONG> <A NAME="figpredictINOnstep">&#160;</A>
   Time delay representation of 5000 iterations of the local linear predictor
   <a href="../dresden/nstep.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/nstep.html">nstep</a> in two dimensions, starting from the last delay vector of
   Fig.&nbsp;<A HREF="node11.html#figdelayPoincare" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html#figdelayPoincare"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>.<BR>
</blockquote><P>
<P>
<a name="casdagli"></a>Casdagli&nbsp;[<A HREF="citation.html#Casdagli_royal" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#Casdagli_royal">53</A>] suggested to use local linear models as a test 
for nonlinearity: He computed the average forecast error as a
function of the neighborhood size on which the fit for <IMG WIDTH=17 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline6979" SRC="img61.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img61.gif"> and <IMG WIDTH=14 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline6981" SRC="img62.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img62.gif"> is
performed. If the optimum occurs at large neighborhood sizes, the data are (in
this embedding space) best described by a linear stochastic process, whereas an
optimum at rather small sizes supports the idea of the existence of a nonlinear
almost deterministic equation of motion. This protocol is implemented in the
routine <a href="../dresden/ll-ar.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/ll-ar.html">ll-ar</a>, see Fig.&nbsp;<A HREF="node20.html#figpredictcasdagli" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node20.html#figpredictcasdagli"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>.
<P>
<P><blockquote><A NAME="5011">&#160;</A><IMG WIDTH=334 HEIGHT=250 ALIGN=BOTTOM ALT="figure901" SRC="img66.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img66.gif"><BR>
<STRONG>Figure:</STRONG> <A NAME="figpredictcasdagli">&#160;</A>
   The Casdagli test for nonlinearity: The rms prediction error of local linear
   models as a function of the neighborhood size <IMG WIDTH=6 HEIGHT=7
   ALIGN=BOTTOM ALT="tex2html_wrap_inline6495" SRC="img3.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img3.gif">. Lower (green) curve: The
   CO<IMG WIDTH=6 HEIGHT=11 ALIGN=MIDDLE ALT="tex2html_wrap_inline6701" SRC="img39.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img39.gif"> laser data. These data are obviously highly deterministic in
   <I>m</I>=4 dimensions and with lag <IMG WIDTH=8 HEIGHT=7 ALIGN=BOTTOM
   ALT="tex2html_wrap_inline6553" SRC="img16.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img16.gif">=6.  Central (blue) curve: The breath rate data
   shown in Fig.&nbsp;<A HREF="node23.html#figb" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node23.html#figb"><IMG  ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> with <I>m</I>=4 and <IMG WIDTH=8 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6553" SRC="img16.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img16.gif">=1. Determinism is weaker
   (presumably due to a much higher noise level), but still the nonlinear
   structure is dominant. Upper (red) curve: Numerically generated data of an AR(5)
   process, a linearly correlated random process (<I>m</I>=5, <IMG WIDTH=8 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline6553" SRC="img16.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img16.gif">=1).<BR>
</blockquote><P><HR><A NAME="tex2html275" HREF="node21.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node21.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html273" HREF="node16.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node16.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html267" HREF="node19.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node19.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html276" HREF="node21.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node21.html">Global function fits</A>
<B>Up:</B> <A NAME="tex2html274" HREF="node16.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node16.html">Nonlinear prediction</A>
<B> Previous:</B> <A NAME="tex2html268" HREF="node19.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node19.html">Finding unstable periodic orbits</A>
<P><ADDRESS>
<I>Thomas Schreiber <BR>
Wed Jan  6 15:38:27 CET 1999</I>
</ADDRESS>
</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -