📄 node10.html
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.2//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Principal components</TITLE>
<META NAME="description" CONTENT="Principal components">
<META NAME="keywords" CONTENT="TiseanHTML">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="TiseanHTML.css" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/TiseanHTML.css">
</HEAD>
<BODY bgcolor=ffffff LANG="EN" >
<A NAME="tex2html172" HREF="node11.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html170" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node5.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html164" HREF="node9.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node9.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html173" HREF="node11.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html">Poincaré sections</A>
<B>Up:</B> <A NAME="tex2html171" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node5.html">Phase space representation</A>
<B> Previous:</B> <A NAME="tex2html165" HREF="node9.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node9.html">False nearest neighbors</A>
<BR> <P>
<H2><A NAME="SECTION00033000000000000000">Principal components</A></H2>
<A NAME="secsvd"> </A>
It has been shown in Ref. [<A HREF="citation.html#embed" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#embed">22</A>] that the embedding technique can be
generalized to a wide class of smooth transformations applied to a time delay
embedding. In particular, if we introduce time delay coordinates <IMG WIDTH=30 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline6675" SRC="img35.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img35.gif">,
then almost every linear transformation of sufficient rank again leads to an
embedding. A specific choice of linear transformation is known as <EM>
principal component analysis, singular value decomposition, empirical
orthogonal functions, Karhunen-Loéve decomposition</EM>, and probably a few other
names. The technique is fairly widely used, for example to reduce multivariate
data to a few major modes. There is a large literature, including textbooks
like that by Jolliffe [<A HREF="citation.html#PC" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#PC">31</A>]. In the context of nonlinear signal processing,
the technique has been advocated among others by Broomhead and King [<A HREF="citation.html#svd" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#svd">32</A>].
<P>
The idea is to introduce a new set of orthonormal basis vectors in embedding
space such that projections onto a given number of these directions preserve
the maximal fraction of the variance of the original vectors. In other words,
the error in making the projection is minimized for a given number of
directions. Solving this minimization problem [<A HREF="citation.html#PC" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#PC">31</A>] leads to an eigenvalue
problem. The desired <EM>principal directions</EM> can be obtained as the
eigenvectors of the symmetric autocovariance matrix that correspond to the
largest eigenvalues. The alternative and formally equivalent approach via the
trajectory matrix is used in Ref. [<A HREF="citation.html#svd" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#svd">32</A>]. The latter is numerically more
stable but involves the singular value decomposition of an <IMG WIDTH=47 HEIGHT=20 ALIGN=MIDDLE ALT="tex2html_wrap_inline6677" SRC="img36.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img36.gif"> matrix
for <I>N</I> data points embedded in <I>m</I> dimensions, which can easily exceed
computational resources for time series of even moderate length [<A HREF="citation.html#numrec" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#numrec">33</A>].
<P>
In almost all the algorithms described below, simple time delay embeddings can
be substituted by principal components. In the TISEAN project (routines
<a href="../dresden/svd.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/dresden/svd.html">svd</a>, <a href="../wuppertal/pc.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/wuppertal/pc.html">pc</a>), principal components are only provided as a stand-alone
visualization tool and for linear filtering [<A HREF="citation.html#Vautard" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/citation.html#Vautard">34</A>], see
Sec. <A HREF="node12.html#secsvdfilter" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node12.html#secsvdfilter"><IMG ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> below. In any case, one first has to choose an
initial time delay embedding and then a number of principal components to be
kept. For the purpose of visualization, the latter is immediately restricted
to two or at most three. In order to take advantage of the noise averaging
effect of the principal component scheme, it is advisable to choose a much
shorter delay than one would for an ordinary time delay embedding, while at
the same time increasing the embedding dimension. Experimentation is
recommended. Figure <A HREF="node10.html#figmcg_pc" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node10.html#figmcg_pc"><IMG ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A> shows the contributions of the first two
principal components to the magneto-cardiogram shown in Fig. <A HREF="node6.html#figmcgd" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node6.html#figmcgd"><IMG ALIGN=BOTTOM ALT="gif" SRC="icons/cross_ref_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/cross_ref_motif.gif"></A>.
<P>
<P><blockquote><A NAME="4545"> </A><IMG WIDTH=225 HEIGHT=233 ALIGN=BOTTOM ALT="figure417" SRC="img34.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img34.gif"><BR>
<STRONG>Figure:</STRONG> <A NAME="figmcg_pc"> </A>
Phase space representation of a human magneto-cardiogram using the two
largest principal components. An initial embedding was chosen in <I>m</I>=20
dimensions with a delay of <IMG WIDTH=38 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline6649" SRC="img33.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/img33.gif"> ms. The two components cover 70% of the
variance of the initial embedding vectors.<BR>
</blockquote><P>
<HR><A NAME="tex2html172" HREF="node11.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/next_motif.gif"></A> <A NAME="tex2html170" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node5.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/up_motif.gif"></A> <A NAME="tex2html164" HREF="node9.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node9.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/icons/previous_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html173" HREF="node11.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node11.html">Poincaré sections</A>
<B>Up:</B> <A NAME="tex2html171" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node5.html">Phase space representation</A>
<B> Previous:</B> <A NAME="tex2html165" HREF="node9.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/chaospaper/node9.html">False nearest neighbors</A>
<P><ADDRESS>
<I>Thomas Schreiber <BR>
Wed Jan 6 15:38:27 CET 1999</I>
</ADDRESS>
</BODY>
</HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -