⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node6.html

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Typical vs. constrained realisations</TITLE>
<META NAME="description" CONTENT="Typical vs. constrained realisations">
<META NAME="keywords" CONTENT="Surrogates">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="Surrogates.css" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/Surrogates.css">
</HEAD>
<BODY bgcolor=#ffffff LANG="EN" >
 <A NAME="tex2html128" HREF="node7.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node7.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/next_motif.gif"></A> <A NAME="tex2html126" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/up_motif.gif"></A> <A NAME="tex2html120" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html129" HREF="node7.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node7.html">The null hypothesis: model </A>
<B>Up:</B> <A NAME="tex2html127" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html">Surrogate data testing</A>
<B> Previous:</B> <A NAME="tex2html121" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html">Surrogate data testing</A>
<BR> <P>
<H2><A NAME="SECTION00031000000000000000">Typical vs. constrained realisations</A></H2>
<P>
Traditional bootstrap methods use explicit model equations that have to be
extracted from the data and are then run to produce Monte Carlo samples.
This <EM>typical realisations</EM> approach can be very powerful for the
computation of confidence intervals, provided the model equations can be
extracted successfully. The latter requirement is very delicate. Ambiguities in
selecting the proper model class and order, as well as the parameter estimation
problem have to be addressed. Whenever the null hypothesis involves an unknown
<EM>function</EM> (rather than just a few parameters) these problems become
profound. A recent example of a <EM>typical realisations</EM> approach to creating
surrogates in the dynamical systems context is given by Ref.&nbsp;[<A HREF="node36.html#witt" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node36.html#witt">24</A>].
There, a Markov model is fitted to a coarse-grained dynamics obtained by
binning the two dimensional delay vector distribution of a time series.
Then, essentially the transfer matrix is iterated to yield surrogate
sequences. We will offer some discussion of that work later in
Sec.&nbsp;<A HREF="node27.html#secinterpret" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node27.html#secinterpret">7</A>.
<P>
As discussed by Theiler and Prichard&nbsp;[<A HREF="node36.html#tp" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node36.html#tp">25</A>], the
alternative approach of <EM>constrained realisations</EM> is more suitable for the
purpose of hypothesis testing we are interested in here. It avoids the fitting
of model equations by directly imposing the desired structures onto the
randomised time series.  However, the choice of possible null hypothesis is
limited by the difficulty of  imposing arbitrary structures on otherwise random
sequences. In the following, we will discuss a number of null hypotheses and
algorithms to provide the adequately constrained realisations. The most general
method to generate constrained randomisations of time series&nbsp;[<A HREF="node36.html#anneal" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node36.html#anneal">26</A>] is 
described in Sec.&nbsp;<A HREF="node16.html#secanneal" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node16.html#secanneal">5</A>.
<P>
Consider as a toy example the null hypothesis that the data consists of
independent draws from a fixed probability distribution. Surrogate time series
can be simply obtained by randomly shuffling the measured data. If we find
significantly different serial correlations in the data and the shuffles, we
can reject the hypothesis of independence. Constrained realisations are
obtained by creating permutations <EM>without replacement</EM>. The surrogates are
constrained to take on exactly the same values as the data, just in random
temporal order. We could also have used the data to infer the probability
distribution and drawn new time series from it. These permutations <EM>with
replacement</EM> would then be what we called typical realisations.
<P>
Obviously, independence is not an interesting null hypothesis for most time
series problems. It becomes relevant when the residual errors of a time series
model are evaluated. For example in the BDS test for
nonlinearity&nbsp;[<A HREF="node36.html#brockpaper1" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node36.html#brockpaper1">27</A>], an ARMA model is fitted to the data. If the
data are linear, then the residuals are expected to be independent.
It has been pointed out, however, that the resulting test is not particularly
powerful for chaotic data&nbsp;[<A HREF="node36.html#bleach" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node36.html#bleach">28</A>].
<P>
<HR><A NAME="tex2html128" HREF="node7.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node7.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/next_motif.gif"></A> <A NAME="tex2html126" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/up_motif.gif"></A> <A NAME="tex2html120" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/previous_motif.gif"></A>   <BR>
<B> Next:</B> <A NAME="tex2html129" HREF="node7.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node7.html">The null hypothesis: model </A>
<B>Up:</B> <A NAME="tex2html127" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html">Surrogate data testing</A>
<B> Previous:</B> <A NAME="tex2html121" HREF="node5.html" tppabs="http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.0/docs/surropaper/node5.html">Surrogate data testing</A>
<P><ADDRESS>
<I>Thomas Schreiber <BR>
Mon Aug 30 17:31:48 CEST 1999</I>
</ADDRESS>
</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -