📄 onestep.c
字号:
/*Author: Rainer Hegger. Last modified: Sep 4, 1999 */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "routines/tsa.h"#include <math.h>#define WID_STR "Estimates the average forecast error for a local\n\t\linear fit"/*number of boxes for the neighbor search algorithm*/#define NMAX 128unsigned int nmax=(NMAX-1);long **box,*list;unsigned long *found;double *series;double interval,min,epsilon;char epsset=0;unsigned int COLUMN=1;unsigned int verbosity=0xff;int DIM=2,DELAY=1,MINN=30,STEP=1;double EPS0=1.e-3,EPSF=1.2;unsigned long LENGTH=ULONG_MAX,exclude=0,CLENGTH=ULONG_MAX;char *infile=NULL;void show_options(char *progname){ what_i_do(progname,WID_STR); fprintf(stderr," Usage: %s [options]\n",progname); fprintf(stderr," Options:\n"); fprintf(stderr,"Everything not being a valid option will be interpreted" " as a possible" " datafile.\nIf no datafile is given stdin is read. Just - also" " means stdin\n"); fprintf(stderr,"\t-l # of data to use [default: whole file]\n"); fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n"); fprintf(stderr,"\t-c column to read [default: 1]\n"); fprintf(stderr,"\t-m embedding dimension [default: 2]\n"); fprintf(stderr,"\t-d delay [default: 1]\n"); fprintf(stderr,"\t-n iterations [default: length]\n"); fprintf(stderr,"\t-k minimal number of neighbors for the fit " "[default: 30]\n"); fprintf(stderr,"\t-r neighborhoud size to start with " "[default: (data interval)/1000]\n"); fprintf(stderr,"\t-f factor to increase size [default: 1.2]\n"); fprintf(stderr,"\t-s steps to forecast [default: 1]\n"); fprintf(stderr,"\t-V verbosity level [default: 1]\n\t\t" "0='only panic messages'\n\t\t" "1='+ input/output messages'\n"); fprintf(stderr,"\t-h show these options\n"); exit(0);}void scan_options(int n,char **in){ char *out; if ((out=check_option(in,n,'l','u')) != NULL) sscanf(out,"%lu",&LENGTH); if ((out=check_option(in,n,'x','u')) != NULL) sscanf(out,"%lu",&exclude); if ((out=check_option(in,n,'c','u')) != NULL) sscanf(out,"%u",&COLUMN); if ((out=check_option(in,n,'m','u')) != NULL) sscanf(out,"%u",&DIM); if ((out=check_option(in,n,'d','u')) != NULL) sscanf(out,"%u",&DELAY); if ((out=check_option(in,n,'n','u')) != NULL) sscanf(out,"%lu",&CLENGTH); if ((out=check_option(in,n,'V','u')) != NULL) sscanf(out,"%u",&verbosity); if ((out=check_option(in,n,'k','u')) != NULL) sscanf(out,"%u",&MINN); if ((out=check_option(in,n,'r','f')) != NULL) { epsset=1; sscanf(out,"%lf",&EPS0); } if ((out=check_option(in,n,'f','f')) != NULL) sscanf(out,"%lf",&EPSF); if ((out=check_option(in,n,'s','u')) != NULL) sscanf(out,"%u",&STEP);}double make_fit(long act,unsigned long number){ double **mat,*vec,hs,casted; int i,j,k,which; check_alloc(vec=(double*)malloc(sizeof(double)*(DIM+1))); check_alloc(mat=(double**)malloc(sizeof(double*)*(DIM+1))); for (i=0;i<=DIM;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*(DIM+1))); for (i=0;i<=DIM;i++) { vec[i]=0.0; for (j=0;j<=DIM;j++) mat[i][j]=0.0; } for (k=0;k<number;k++) { which=found[k]; vec[0] += series[which+STEP]; for (i=1;i<=DIM;i++) mat[0][i] += series[which-(i-1)*DELAY]; } mat[0][0]=(double)number; for (k=0;k<number;k++) { which=found[k]; for (i=1;i<=DIM;i++) { hs=series[which-(i-1)*DELAY]; vec[i] += series[which+STEP]*hs; for (j=i;j<=DIM;j++) mat[i][j] += series[which-(j-1)*DELAY]*hs; } } for (i=0;i<=DIM;i++) { vec[i] /= number; for (j=i;j<=DIM;j++) { mat[i][j] /= number; mat[j][i]=mat[i][j]; } } solvele(mat,vec,(unsigned int)(DIM+1)); casted=vec[0]; for (i=1;i<=DIM;i++) casted += vec[i]*series[act-(i-1)*DELAY]; free(vec); for (i=0;i<=DIM;i++) free(mat[i]); free(mat); return (casted-series[act+STEP])*(casted-series[act+STEP]);}int main(int argc,char **argv){ char alldone,*done; long i; unsigned long *hfound; unsigned long actfound; unsigned long clength; double rms,av,error=0.0; if (scan_help(argc,argv)) show_options(argv[0]); scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO if (verbosity&VER_INPUT) what_i_do(argv[0],WID_STR);#endif infile=search_datafile(argc,argv,&COLUMN,verbosity); series=(double*)get_series(infile,&LENGTH,exclude,COLUMN,verbosity); rescale_data(series,LENGTH,&min,&interval); variance(series,LENGTH,&av,&rms); check_alloc(list=(long*)malloc(sizeof(long)*LENGTH)); check_alloc(found=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(hfound=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(done=(char*)malloc(sizeof(char)*LENGTH)); check_alloc(box=(long**)malloc(sizeof(long*)*NMAX)); for (i=0;i<NMAX;i++) check_alloc(box[i]=(long*)malloc(sizeof(long)*NMAX)); for (i=0;i<LENGTH;i++) done[i]=0; alldone=0; if (epsset) EPS0 /= interval; epsilon=EPS0/EPSF; clength=(CLENGTH <= LENGTH) ? CLENGTH-STEP : LENGTH-STEP; while (!alldone) { alldone=1; epsilon*=EPSF; make_box(series,box,list,LENGTH-STEP,NMAX,(unsigned int)DIM, (unsigned int)DELAY,epsilon); for (i=(DIM-1)*DELAY;i<clength;i++) if (!done[i]) { actfound=find_neighbors(series,box,list,series+i,LENGTH,NMAX, (unsigned int)DIM,(unsigned int)DELAY, epsilon,hfound); actfound=exclude_interval(actfound,i-STEP+1,i+STEP+(DIM-1)*DELAY-1, hfound,found); if (actfound > MINN) { error += make_fit(i,actfound); done[i]=1; } alldone &= done[i]; } } printf("Relative forecast error= %e\n", sqrt(error/(clength-(DIM-1)*DELAY))/rms); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -