⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 onestep.c

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 C
字号:
/*Author: Rainer Hegger. Last modified: Sep 4, 1999 */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "routines/tsa.h"#include <math.h>#define WID_STR "Estimates the average forecast error for a local\n\t\linear fit"/*number of boxes for the neighbor search algorithm*/#define NMAX 128unsigned int nmax=(NMAX-1);long **box,*list;unsigned long *found;double *series;double interval,min,epsilon;char epsset=0;unsigned int COLUMN=1;unsigned int verbosity=0xff;int DIM=2,DELAY=1,MINN=30,STEP=1;double EPS0=1.e-3,EPSF=1.2;unsigned long LENGTH=ULONG_MAX,exclude=0,CLENGTH=ULONG_MAX;char *infile=NULL;void show_options(char *progname){  what_i_do(progname,WID_STR);  fprintf(stderr," Usage: %s [options]\n",progname);  fprintf(stderr," Options:\n");  fprintf(stderr,"Everything not being a valid option will be interpreted"          " as a possible"          " datafile.\nIf no datafile is given stdin is read. Just - also"          " means stdin\n");  fprintf(stderr,"\t-l # of data to use [default: whole file]\n");  fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n");  fprintf(stderr,"\t-c column to read [default: 1]\n");  fprintf(stderr,"\t-m embedding dimension [default: 2]\n");  fprintf(stderr,"\t-d delay [default: 1]\n");  fprintf(stderr,"\t-n iterations [default: length]\n");  fprintf(stderr,"\t-k minimal number of neighbors for the fit "	  "[default: 30]\n");  fprintf(stderr,"\t-r neighborhoud size to start with "	  "[default: (data interval)/1000]\n");  fprintf(stderr,"\t-f factor to increase size [default: 1.2]\n");  fprintf(stderr,"\t-s steps to forecast [default: 1]\n");  fprintf(stderr,"\t-V verbosity level [default: 1]\n\t\t"          "0='only panic messages'\n\t\t"          "1='+ input/output messages'\n");  fprintf(stderr,"\t-h show these options\n");  exit(0);}void scan_options(int n,char **in){  char *out;  if ((out=check_option(in,n,'l','u')) != NULL)    sscanf(out,"%lu",&LENGTH);  if ((out=check_option(in,n,'x','u')) != NULL)    sscanf(out,"%lu",&exclude);  if ((out=check_option(in,n,'c','u')) != NULL)    sscanf(out,"%u",&COLUMN);  if ((out=check_option(in,n,'m','u')) != NULL)    sscanf(out,"%u",&DIM);  if ((out=check_option(in,n,'d','u')) != NULL)    sscanf(out,"%u",&DELAY);  if ((out=check_option(in,n,'n','u')) != NULL)    sscanf(out,"%lu",&CLENGTH);  if ((out=check_option(in,n,'V','u')) != NULL)    sscanf(out,"%u",&verbosity);  if ((out=check_option(in,n,'k','u')) != NULL)    sscanf(out,"%u",&MINN);  if ((out=check_option(in,n,'r','f')) != NULL) {    epsset=1;    sscanf(out,"%lf",&EPS0);  }  if ((out=check_option(in,n,'f','f')) != NULL)    sscanf(out,"%lf",&EPSF);  if ((out=check_option(in,n,'s','u')) != NULL)    sscanf(out,"%u",&STEP);}double make_fit(long act,unsigned long number){  double **mat,*vec,hs,casted;  int i,j,k,which;    check_alloc(vec=(double*)malloc(sizeof(double)*(DIM+1)));  check_alloc(mat=(double**)malloc(sizeof(double*)*(DIM+1)));  for (i=0;i<=DIM;i++)    check_alloc(mat[i]=(double*)malloc(sizeof(double)*(DIM+1)));      for (i=0;i<=DIM;i++) {    vec[i]=0.0;    for (j=0;j<=DIM;j++)      mat[i][j]=0.0;  }    for (k=0;k<number;k++) {    which=found[k];    vec[0] += series[which+STEP];    for (i=1;i<=DIM;i++)      mat[0][i] += series[which-(i-1)*DELAY];  }  mat[0][0]=(double)number;  for (k=0;k<number;k++) {    which=found[k];    for (i=1;i<=DIM;i++) {      hs=series[which-(i-1)*DELAY];      vec[i] += series[which+STEP]*hs;      for (j=i;j<=DIM;j++)	mat[i][j] += series[which-(j-1)*DELAY]*hs;    }  }  for (i=0;i<=DIM;i++) {    vec[i] /= number;    for (j=i;j<=DIM;j++) {      mat[i][j] /= number;      mat[j][i]=mat[i][j];    }  }  solvele(mat,vec,(unsigned int)(DIM+1));  casted=vec[0];  for (i=1;i<=DIM;i++)    casted += vec[i]*series[act-(i-1)*DELAY];  free(vec);  for (i=0;i<=DIM;i++)    free(mat[i]);  free(mat);  return (casted-series[act+STEP])*(casted-series[act+STEP]);}int main(int argc,char **argv){  char alldone,*done;  long i;  unsigned long *hfound;  unsigned long actfound;  unsigned long clength;  double rms,av,error=0.0;  if (scan_help(argc,argv))    show_options(argv[0]);    scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO  if (verbosity&VER_INPUT)    what_i_do(argv[0],WID_STR);#endif  infile=search_datafile(argc,argv,&COLUMN,verbosity);    series=(double*)get_series(infile,&LENGTH,exclude,COLUMN,verbosity);  rescale_data(series,LENGTH,&min,&interval);  variance(series,LENGTH,&av,&rms);    check_alloc(list=(long*)malloc(sizeof(long)*LENGTH));  check_alloc(found=(unsigned long*)malloc(sizeof(long)*LENGTH));  check_alloc(hfound=(unsigned long*)malloc(sizeof(long)*LENGTH));  check_alloc(done=(char*)malloc(sizeof(char)*LENGTH));  check_alloc(box=(long**)malloc(sizeof(long*)*NMAX));  for (i=0;i<NMAX;i++)    check_alloc(box[i]=(long*)malloc(sizeof(long)*NMAX));      for (i=0;i<LENGTH;i++)    done[i]=0;  alldone=0;  if (epsset)    EPS0 /= interval;  epsilon=EPS0/EPSF;  clength=(CLENGTH <= LENGTH) ? CLENGTH-STEP : LENGTH-STEP;  while (!alldone) {    alldone=1;    epsilon*=EPSF;    make_box(series,box,list,LENGTH-STEP,NMAX,(unsigned int)DIM,	     (unsigned int)DELAY,epsilon);    for (i=(DIM-1)*DELAY;i<clength;i++)      if (!done[i]) {	actfound=find_neighbors(series,box,list,series+i,LENGTH,NMAX,				(unsigned int)DIM,(unsigned int)DELAY,				epsilon,hfound);	actfound=exclude_interval(actfound,i-STEP+1,i+STEP+(DIM-1)*DELAY-1,				  hfound,found);	if (actfound > MINN) {	  error += make_fit(i,actfound);	  done[i]=1;	}	alldone &= done[i];      }  }  printf("Relative forecast error= %e\n",	 sqrt(error/(clength-(DIM-1)*DELAY))/rms);    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -