⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ghkss.c

📁 an analysis software with souce code for the time series with methods based on the theory of nonline
💻 C
字号:
/*Author: Rainer Hegger Last modified: Sep 3, 1999 */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <limits.h>#include "routines/tsa.h"#define WID_STR "Noise reduction using the GHKSS algorithm"#define BOX (unsigned int)512unsigned long length=ULONG_MAX,exclude=0;unsigned int dim=5,qdim=3,delay=1,column=1,minn=30,iterations=1;unsigned int verbosity=0xff;double mineps,epsfac;char eps_set=0,euclidean=0,resize_eps;char *outfile=NULL,stdo=1;char *infile=NULL;double d_max,d_min;double *series,*delta,**corr;double *metric,trace;long **box,*list;unsigned long *flist;/*these are global to save time*/int *sorted;double *av,**mat,*eig,*off;void show_options(char *progname){  what_i_do(progname,WID_STR);  fprintf(stderr,"Usage: %s [options]\n",progname);  fprintf(stderr,"Options:\n");  fprintf(stderr,"Everything not being a valid option will be interpreted"          " as a possible"          " datafile.\nIf no datafile is given stdin is read. Just - also"          " means stdin\n");  fprintf(stderr,"\t-l # of data to use [Default: whole file]\n");  fprintf(stderr,"\t-x # of lines to be ignored [Default: 0]\n");  fprintf(stderr,"\t-c column to read [Default: 1]\n");  fprintf(stderr,"\t-m embedding dimension [Default: 5]\n");  fprintf(stderr,"\t-d delay [Default: 1]\n");  fprintf(stderr,"\t-q dimension to project to [Default: 3]\n");  fprintf(stderr,"\t-k minimal number of neighbours [Default: 30]\n");  fprintf(stderr,"\t-r minimal neighbourhood size \n\t\t"	  "[Default: (interval of data)/1000]\n");  fprintf(stderr,"\t-i # of iterations [Default: 1]\n");  fprintf(stderr,"\t-2 use euklidean metric [Default: non euklidean]\n");  fprintf(stderr,"\t-o name of output file \n\t\t"	  "[Default: 'datafile'.opt.n, where n is the iteration.\n\t\t"	  " If no -o is given, the last iteration is also"	  " written to stdout]\n");  fprintf(stderr,"\t-V verbosity level [Default: 7]\n\t\t"          "0='only panic messages'\n\t\t"          "1='+ input/output messages'\n\t\t"          "2='+ average correction and trend'\n\t\t"	  "4='+ how many points for which epsilon'\n");  fprintf(stderr,"\t-h show these options\n");  exit(0);}void scan_options(int n,char **in){  char *out;  if ((out=check_option(in,n,'l','u')) != NULL)    sscanf(out,"%lu",&length);  if ((out=check_option(in,n,'x','u')) != NULL)    sscanf(out,"%lu",&exclude);  if ((out=check_option(in,n,'c','u')) != NULL)    sscanf(out,"%u",&column);  if ((out=check_option(in,n,'m','u')) != NULL)    sscanf(out,"%u",&dim);  if ((out=check_option(in,n,'d','u')) != NULL)    sscanf(out,"%u",&delay);  if ((out=check_option(in,n,'q','u')) != NULL)    sscanf(out,"%u",&qdim);  if ((out=check_option(in,n,'k','u')) != NULL)    sscanf(out,"%u",&minn);  if ((out=check_option(in,n,'r','f')) != NULL) {    eps_set=1;    sscanf(out,"%lf",&mineps);  }  if ((out=check_option(in,n,'i','u')) != NULL)    sscanf(out,"%u",&iterations);  if ((out=check_option(in,n,'V','u')) != NULL)    sscanf(out,"%u",&verbosity);  if ((out=check_option(in,n,'2','n')) != NULL)    euclidean=1;  if ((out=check_option(in,n,'o','o')) != NULL) {    stdo=0;    if (strlen(out) > 0)      outfile=out;  }}void sort(double *x,int *n){  int i,j,iswap;  double dswap;    for (i=0;i<dim;i++)    n[i]=i;    for (i=0;i<dim-1;i++)    for (j=i+1;j<dim;j++)      if (x[j] > x[i]) {	dswap=x[i];	x[i]=x[j];	x[j]=dswap;	iswap=n[i];	n[i]=n[j];	n[j]=iswap;      }}void make_correction(unsigned long n,unsigned long nf){  int i,i1,j,j1,k,hs;  double help;    for (i=0;i<dim;i++) {    i1=i*delay;    help=0.0;    for (j=0;j<nf;j++)      help += series[flist[j]-i1];    av[i]=help/nf;  }  for (i=0;i<dim;i++) {    i1=i*delay;    for (j=i;j<dim;j++) {      help=0.0;      j1=j*delay;      for (k=0;k<nf;k++) {	hs=flist[k];	help += series[hs-i1]*series[hs-j1];      }      mat[i][j]=(help/nf-av[i]*av[j])*metric[i]*metric[j];      mat[j][i]=mat[i][j];    }  }  eig1(mat,(long)dim,eig,off);   eig2(eig,off,(long)dim,mat);  sort(eig,sorted);  for (i=0;i<dim;i++) {    help=0.0;    for (j=qdim;j<dim;j++) {      hs=sorted[j];      for (k=0;k<dim;k++) {	help += (series[n-k*delay]-av[k])*mat[k][hs]*mat[i][hs]*metric[k];      }    }    corr[n][i]=help/metric[i];  }}void handle_trend(unsigned long n,unsigned long nf){  int i,j;  double *av,help;    check_alloc(av=(double*)malloc(sizeof(double)*dim));    for (i=0;i<dim;i++) {    help=0.0;    for (j=0;j<nf;j++)      help += corr[flist[j]][i];    av[i]=help/nf;  }    for (i=0;i<dim;i++)    delta[n-i*delay] += (corr[n][i]-av[i])/(trace*metric[i]);  free(av);}void set_correction(void){  int i;  unsigned long toolarge=0;  double av=0.0,sigma=0.0,help,hhelp;  for (i=0;i<length;i++) {    av += (help=delta[i]);    sigma += help*help;  }  av /= length;  sigma=sqrt(fabs(sigma/length-av*av));  if (verbosity&(VER_USR1|VER_USR2)) {    fprintf(stderr,"Average shift of the data= %e\n",av*d_max);    fprintf(stderr,"Average rms correction= %e\n\n",sigma*d_max);  }  for (i=0;i<length;i++) {    help=delta[i];    if ((hhelp=fabs(help)) < 10.0*sigma)      series[i] -= help;    else {      series[i] -= help*exp(-fabs(hhelp)/sigma);      toolarge++;    }  }  if (verbosity&(VER_USR1|VER_USR2))    fprintf(stderr,"For %ld points the correction was unreasonably large\n",	    toolarge);  if (resize_eps) {    mineps /= epsfac;    if (verbosity&VER_USR2)      fprintf(stderr,"Reset minimal neighbourhood size to %e\n",mineps*d_max);  }  resize_eps=0;}int main(int argc,char **argv){  char stdi=0;  int iter,i,j,epscount,*ok;  char all_done;  char *ofname;  unsigned long nfound,n,allfound;  double epsilon;  FILE *file;  if (scan_help(argc,argv))    show_options(argv[0]);    scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO  if (verbosity&VER_INPUT)    what_i_do(argv[0],WID_STR);#endif  infile=search_datafile(argc,argv,&column,verbosity);  if (infile == NULL)    stdi=1;  if (outfile == NULL) {    if (!stdi) {      check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1));      check_alloc(ofname=(char*)calloc(strlen(infile)+9,(size_t)1));      sprintf(outfile,"%s.opt",infile);    }    else {      check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1));      check_alloc(ofname=(char*)calloc((size_t)14,(size_t)1));      sprintf(outfile,"stdin.opt");    }  }  else    check_alloc(ofname=(char*)calloc(strlen(outfile)+10,(size_t)1));    series=(double*)get_series(infile,&length,exclude,column,verbosity);  if (length < minn) {    fprintf(stderr,"With %lu data you will never find %u neighbors."	    " Exiting!\n",length,minn);    exit(127);  }  rescale_data(series,length,&d_min,&d_max);  if (!eps_set)    mineps=1./1000.;  else    mineps /= d_max;  epsfac=sqrt(2.0);  check_alloc(box=(long**)malloc(sizeof(long*)*BOX));  for (i=0;i<BOX;i++)    check_alloc(box[i]=(long*)malloc(sizeof(long)*BOX));  check_alloc(list=(long*)malloc(sizeof(long)*length));  check_alloc(flist=(unsigned long*)malloc(sizeof(long)*length));  check_alloc(metric=(double*)malloc(sizeof(double)*dim));  trace=0.0;  for (i=1;i<dim-1;i++) {    metric[i]=1.0;    trace += 1./metric[i];  }  if (!euclidean)    metric[0]=metric[dim-1]=1.0e3;  else    metric[0]=metric[dim-1]=1.0;  trace += (1./metric[0]+1./metric[dim-1]);  check_alloc(corr=(double**)malloc(sizeof(double*)*length));  for (i=0;i<length;i++)    check_alloc(corr[i]=(double*)malloc(sizeof(double)*dim));  check_alloc(delta=(double*)malloc(sizeof(double)*length));  check_alloc(ok=(int*)malloc(sizeof(int)*length));  check_alloc(av=(double*)malloc(sizeof(double)*dim));  check_alloc(sorted=(int*)malloc(sizeof(int)*dim));  check_alloc(eig=(double*)malloc(sizeof(double)*dim));  check_alloc(off=(double*)malloc(sizeof(double)*dim));  check_alloc(mat=(double**)malloc(sizeof(double*)*dim));  for (i=0;i<dim;i++)    check_alloc(mat[i]=(double*)malloc(sizeof(double)*dim));  resize_eps=0;  for (iter=1;iter<=iterations;iter++) {    for (i=0;i<length;i++) {      ok[i]=0;      delta[i]=0.0;      for (j=0;j<dim;j++)	corr[i][j]=0.0;    }    epsilon=mineps;    all_done=0;    epscount=1;    allfound=0;    if (verbosity&(VER_USR1|VER_USR2))      fprintf(stderr,"Starting iteration %d\n",iter);    while(!all_done) {      make_box(series,box,list,length,BOX,dim,delay,epsilon);      all_done=1;      for (n=(dim-1)*delay;n<length;n++)	if (!ok[n]) {	  nfound=find_neighbors(series,box,list,series+n,length,BOX,dim,delay,				epsilon,flist);	  if (nfound >= minn) {	    make_correction(n,nfound);	    ok[n]=epscount;	    if (epscount == 1)	      resize_eps=1;	    allfound++;	  }	  else	    all_done=0;	}      if (verbosity&VER_USR2)	fprintf(stderr,"Corrected %ld points with epsilon= %e\n",allfound,		epsilon*d_max);      epsilon *= epsfac;      epscount++;    }    if (verbosity&VER_USR2)      fprintf(stderr,"Start evaluating the trend\n");    epsilon=mineps;    allfound=0;    for (i=1;i<epscount;i++) {      make_box(series,box,list,length,BOX,dim,delay,epsilon);      for (n=(dim-1)*delay;n<length;n++)	if (ok[n] == i) {	  nfound=find_neighbors(series,box,list,series+n,length,BOX,dim,delay,				epsilon,flist);	  handle_trend(n,nfound);	  allfound++;	}      if (verbosity&VER_USR2)	fprintf(stderr,"Trend subtracted for %ld points with epsilon= %e\n",		allfound,epsilon*d_max);      epsilon *= epsfac;    }    set_correction();        sprintf(ofname,"%s.%d",outfile,iter);    test_outfile(ofname);    file=fopen(ofname,"w");    if (verbosity&VER_INPUT)      fprintf(stderr,"Opened %s for writing\n\n",ofname);    for (i=0;i<length;i++) {      fprintf(file,"%e\n",series[i]*d_max+d_min);      if (stdo && (iter == iterations))	fprintf(stdout,"%e\n",series[i]*d_max+d_min);    }    fclose(file);  }  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -