📄 ghkss.c
字号:
/*Author: Rainer Hegger Last modified: Sep 3, 1999 */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <limits.h>#include "routines/tsa.h"#define WID_STR "Noise reduction using the GHKSS algorithm"#define BOX (unsigned int)512unsigned long length=ULONG_MAX,exclude=0;unsigned int dim=5,qdim=3,delay=1,column=1,minn=30,iterations=1;unsigned int verbosity=0xff;double mineps,epsfac;char eps_set=0,euclidean=0,resize_eps;char *outfile=NULL,stdo=1;char *infile=NULL;double d_max,d_min;double *series,*delta,**corr;double *metric,trace;long **box,*list;unsigned long *flist;/*these are global to save time*/int *sorted;double *av,**mat,*eig,*off;void show_options(char *progname){ what_i_do(progname,WID_STR); fprintf(stderr,"Usage: %s [options]\n",progname); fprintf(stderr,"Options:\n"); fprintf(stderr,"Everything not being a valid option will be interpreted" " as a possible" " datafile.\nIf no datafile is given stdin is read. Just - also" " means stdin\n"); fprintf(stderr,"\t-l # of data to use [Default: whole file]\n"); fprintf(stderr,"\t-x # of lines to be ignored [Default: 0]\n"); fprintf(stderr,"\t-c column to read [Default: 1]\n"); fprintf(stderr,"\t-m embedding dimension [Default: 5]\n"); fprintf(stderr,"\t-d delay [Default: 1]\n"); fprintf(stderr,"\t-q dimension to project to [Default: 3]\n"); fprintf(stderr,"\t-k minimal number of neighbours [Default: 30]\n"); fprintf(stderr,"\t-r minimal neighbourhood size \n\t\t" "[Default: (interval of data)/1000]\n"); fprintf(stderr,"\t-i # of iterations [Default: 1]\n"); fprintf(stderr,"\t-2 use euklidean metric [Default: non euklidean]\n"); fprintf(stderr,"\t-o name of output file \n\t\t" "[Default: 'datafile'.opt.n, where n is the iteration.\n\t\t" " If no -o is given, the last iteration is also" " written to stdout]\n"); fprintf(stderr,"\t-V verbosity level [Default: 7]\n\t\t" "0='only panic messages'\n\t\t" "1='+ input/output messages'\n\t\t" "2='+ average correction and trend'\n\t\t" "4='+ how many points for which epsilon'\n"); fprintf(stderr,"\t-h show these options\n"); exit(0);}void scan_options(int n,char **in){ char *out; if ((out=check_option(in,n,'l','u')) != NULL) sscanf(out,"%lu",&length); if ((out=check_option(in,n,'x','u')) != NULL) sscanf(out,"%lu",&exclude); if ((out=check_option(in,n,'c','u')) != NULL) sscanf(out,"%u",&column); if ((out=check_option(in,n,'m','u')) != NULL) sscanf(out,"%u",&dim); if ((out=check_option(in,n,'d','u')) != NULL) sscanf(out,"%u",&delay); if ((out=check_option(in,n,'q','u')) != NULL) sscanf(out,"%u",&qdim); if ((out=check_option(in,n,'k','u')) != NULL) sscanf(out,"%u",&minn); if ((out=check_option(in,n,'r','f')) != NULL) { eps_set=1; sscanf(out,"%lf",&mineps); } if ((out=check_option(in,n,'i','u')) != NULL) sscanf(out,"%u",&iterations); if ((out=check_option(in,n,'V','u')) != NULL) sscanf(out,"%u",&verbosity); if ((out=check_option(in,n,'2','n')) != NULL) euclidean=1; if ((out=check_option(in,n,'o','o')) != NULL) { stdo=0; if (strlen(out) > 0) outfile=out; }}void sort(double *x,int *n){ int i,j,iswap; double dswap; for (i=0;i<dim;i++) n[i]=i; for (i=0;i<dim-1;i++) for (j=i+1;j<dim;j++) if (x[j] > x[i]) { dswap=x[i]; x[i]=x[j]; x[j]=dswap; iswap=n[i]; n[i]=n[j]; n[j]=iswap; }}void make_correction(unsigned long n,unsigned long nf){ int i,i1,j,j1,k,hs; double help; for (i=0;i<dim;i++) { i1=i*delay; help=0.0; for (j=0;j<nf;j++) help += series[flist[j]-i1]; av[i]=help/nf; } for (i=0;i<dim;i++) { i1=i*delay; for (j=i;j<dim;j++) { help=0.0; j1=j*delay; for (k=0;k<nf;k++) { hs=flist[k]; help += series[hs-i1]*series[hs-j1]; } mat[i][j]=(help/nf-av[i]*av[j])*metric[i]*metric[j]; mat[j][i]=mat[i][j]; } } eig1(mat,(long)dim,eig,off); eig2(eig,off,(long)dim,mat); sort(eig,sorted); for (i=0;i<dim;i++) { help=0.0; for (j=qdim;j<dim;j++) { hs=sorted[j]; for (k=0;k<dim;k++) { help += (series[n-k*delay]-av[k])*mat[k][hs]*mat[i][hs]*metric[k]; } } corr[n][i]=help/metric[i]; }}void handle_trend(unsigned long n,unsigned long nf){ int i,j; double *av,help; check_alloc(av=(double*)malloc(sizeof(double)*dim)); for (i=0;i<dim;i++) { help=0.0; for (j=0;j<nf;j++) help += corr[flist[j]][i]; av[i]=help/nf; } for (i=0;i<dim;i++) delta[n-i*delay] += (corr[n][i]-av[i])/(trace*metric[i]); free(av);}void set_correction(void){ int i; unsigned long toolarge=0; double av=0.0,sigma=0.0,help,hhelp; for (i=0;i<length;i++) { av += (help=delta[i]); sigma += help*help; } av /= length; sigma=sqrt(fabs(sigma/length-av*av)); if (verbosity&(VER_USR1|VER_USR2)) { fprintf(stderr,"Average shift of the data= %e\n",av*d_max); fprintf(stderr,"Average rms correction= %e\n\n",sigma*d_max); } for (i=0;i<length;i++) { help=delta[i]; if ((hhelp=fabs(help)) < 10.0*sigma) series[i] -= help; else { series[i] -= help*exp(-fabs(hhelp)/sigma); toolarge++; } } if (verbosity&(VER_USR1|VER_USR2)) fprintf(stderr,"For %ld points the correction was unreasonably large\n", toolarge); if (resize_eps) { mineps /= epsfac; if (verbosity&VER_USR2) fprintf(stderr,"Reset minimal neighbourhood size to %e\n",mineps*d_max); } resize_eps=0;}int main(int argc,char **argv){ char stdi=0; int iter,i,j,epscount,*ok; char all_done; char *ofname; unsigned long nfound,n,allfound; double epsilon; FILE *file; if (scan_help(argc,argv)) show_options(argv[0]); scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO if (verbosity&VER_INPUT) what_i_do(argv[0],WID_STR);#endif infile=search_datafile(argc,argv,&column,verbosity); if (infile == NULL) stdi=1; if (outfile == NULL) { if (!stdi) { check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1)); check_alloc(ofname=(char*)calloc(strlen(infile)+9,(size_t)1)); sprintf(outfile,"%s.opt",infile); } else { check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1)); check_alloc(ofname=(char*)calloc((size_t)14,(size_t)1)); sprintf(outfile,"stdin.opt"); } } else check_alloc(ofname=(char*)calloc(strlen(outfile)+10,(size_t)1)); series=(double*)get_series(infile,&length,exclude,column,verbosity); if (length < minn) { fprintf(stderr,"With %lu data you will never find %u neighbors." " Exiting!\n",length,minn); exit(127); } rescale_data(series,length,&d_min,&d_max); if (!eps_set) mineps=1./1000.; else mineps /= d_max; epsfac=sqrt(2.0); check_alloc(box=(long**)malloc(sizeof(long*)*BOX)); for (i=0;i<BOX;i++) check_alloc(box[i]=(long*)malloc(sizeof(long)*BOX)); check_alloc(list=(long*)malloc(sizeof(long)*length)); check_alloc(flist=(unsigned long*)malloc(sizeof(long)*length)); check_alloc(metric=(double*)malloc(sizeof(double)*dim)); trace=0.0; for (i=1;i<dim-1;i++) { metric[i]=1.0; trace += 1./metric[i]; } if (!euclidean) metric[0]=metric[dim-1]=1.0e3; else metric[0]=metric[dim-1]=1.0; trace += (1./metric[0]+1./metric[dim-1]); check_alloc(corr=(double**)malloc(sizeof(double*)*length)); for (i=0;i<length;i++) check_alloc(corr[i]=(double*)malloc(sizeof(double)*dim)); check_alloc(delta=(double*)malloc(sizeof(double)*length)); check_alloc(ok=(int*)malloc(sizeof(int)*length)); check_alloc(av=(double*)malloc(sizeof(double)*dim)); check_alloc(sorted=(int*)malloc(sizeof(int)*dim)); check_alloc(eig=(double*)malloc(sizeof(double)*dim)); check_alloc(off=(double*)malloc(sizeof(double)*dim)); check_alloc(mat=(double**)malloc(sizeof(double*)*dim)); for (i=0;i<dim;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*dim)); resize_eps=0; for (iter=1;iter<=iterations;iter++) { for (i=0;i<length;i++) { ok[i]=0; delta[i]=0.0; for (j=0;j<dim;j++) corr[i][j]=0.0; } epsilon=mineps; all_done=0; epscount=1; allfound=0; if (verbosity&(VER_USR1|VER_USR2)) fprintf(stderr,"Starting iteration %d\n",iter); while(!all_done) { make_box(series,box,list,length,BOX,dim,delay,epsilon); all_done=1; for (n=(dim-1)*delay;n<length;n++) if (!ok[n]) { nfound=find_neighbors(series,box,list,series+n,length,BOX,dim,delay, epsilon,flist); if (nfound >= minn) { make_correction(n,nfound); ok[n]=epscount; if (epscount == 1) resize_eps=1; allfound++; } else all_done=0; } if (verbosity&VER_USR2) fprintf(stderr,"Corrected %ld points with epsilon= %e\n",allfound, epsilon*d_max); epsilon *= epsfac; epscount++; } if (verbosity&VER_USR2) fprintf(stderr,"Start evaluating the trend\n"); epsilon=mineps; allfound=0; for (i=1;i<epscount;i++) { make_box(series,box,list,length,BOX,dim,delay,epsilon); for (n=(dim-1)*delay;n<length;n++) if (ok[n] == i) { nfound=find_neighbors(series,box,list,series+n,length,BOX,dim,delay, epsilon,flist); handle_trend(n,nfound); allfound++; } if (verbosity&VER_USR2) fprintf(stderr,"Trend subtracted for %ld points with epsilon= %e\n", allfound,epsilon*d_max); epsilon *= epsfac; } set_correction(); sprintf(ofname,"%s.%d",outfile,iter); test_outfile(ofname); file=fopen(ofname,"w"); if (verbosity&VER_INPUT) fprintf(stderr,"Opened %s for writing\n\n",ofname); for (i=0;i<length;i++) { fprintf(file,"%e\n",series[i]*d_max+d_min); if (stdo && (iter == iterations)) fprintf(stdout,"%e\n",series[i]*d_max+d_min); } fclose(file); } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -