📄 plotcov2.m
字号:
% PLOTCOV2 - Plots a covariance ellipsoid with axes for a bivariate
% Gaussian distribution.
%
% Usage:
% [h, s] = plotcov2(mu, Sigma[, OPTIONS]);
%
% Inputs:
% mu - a 2 x 1 vector giving the mean of the distribution.
% Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
% the covariance of the distribution (or the zero matrix).
%
% Options:
% 'conf' - a scalar between 0 and 1 giving the confidence
% interval (i.e., the fraction of probability mass to
% be enclosed by the ellipse); default is 0.9.
% 'num-pts' - if the value supplied is n, then (n + 1)^2 points
% to be used to plot the ellipse; default is 20.
% 'label' - if non-empty, a string that will label the
% ellipsoid (default: [])
% 'plot-axes' - a 0/1 flag indicating if the ellipsoid's axes
% should be plotted (default: 1)
% 'plot-opts' - a cell vector of arguments to be handed to PLOT3
% to contol the appearance of the axes, e.g.,
% {'Color', 'g', 'LineWidth', 1}; the default is {}
% 'fill-color' - a color specifier; is this is not [], the
% covariance ellipse is filled with this color
% (default: [])
%
% Outputs:
% h - a vector of handles on the axis lines
%
% See also: PLOTCOV3
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, s] = plotcov2(mu, Sigma, varargin)
h = [];
s = [];
if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
Sigma = checkpsd(Sigma);
[p, ...
n, ...
label, ...
plot_axes, ...
plot_opts, ...
fill_color] = process_options(varargin, 'conf', 0.9, ...
'num-pts', 20, ...
'label', [], ...
'plot-axes', 1, ...
'plot-opts', {}, ...
'fill-color', []);
holding = ishold;
% Compute the Mahalanobis radius of the ellipsoid that encloses
% the desired probability mass.
k = conf2mahal(p, 2);
% Scale the covariance matrix so the confidence region has unit
% Mahalanobis distance.
Sigma = Sigma * k;
% The axes of the covariance ellipse are given by the eigenvectors of
% the covariance matrix. Their lengths (for the ellipse with unit
% Mahalanobis radius) are given by the square roots of the
% corresponding eigenvalues.
[V, D] = eig(full(Sigma));
V = real(V);
D = real(D);
D = abs(D);
% Compute the points on the boundary of the ellipsoid.
t = linspace(0, 2*pi, n);
u = [cos(t(:))'; sin(t(:))'];
w = (V * sqrt(D)) * u;
z = repmat(mu(:), [1 n]) + w;
h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
if (~isempty(fill_color))
s = patch(z(1, :), z(2, :), fill_color);
end
% Plot the axes.
if (plot_axes)
hold on;
L = sqrt(diag(D));
h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
[mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
[mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
end
if (~isempty(label))
th = text(mu(1), mu(2), label);
set(th, 'FontSize', 18);
set(th, 'FontName', 'Times');
set(th, 'FontWeight', 'bold');
set(th, 'FontAngle', 'italic');
set(th, 'HorizontalAlignment', 'center');
end
if (~holding & plot_axes) hold off; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -