⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pcamat.m

📁 fastica 独立成分分析的matlab代码
💻 M
字号:
function [E, D] = pcamat(vectors, firstEig, lastEig, s_interactive, ...    s_verbose);%PCAMAT - Calculates the pca for data%% [E, D] = pcamat(vectors, firstEig, lastEig, ... %                 interactive, verbose);%% Calculates the PCA matrices for given data (row) vectors. Returns% the eigenvector (E) and diagonal eigenvalue (D) matrices containing the% selected subspaces. Dimensionality reduction is controlled with% the parameters 'firstEig' and 'lastEig' - but it can also be done% interactively by setting parameter 'interactive' to 'on' or 'gui'.%% ARGUMENTS%% vectors       Data in row vectors.% firstEig      Index of the largest eigenvalue to keep.%               Default is 1.% lastEig       Index of the smallest eigenvalue to keep.%               Default is equal to dimension of vectors.% interactive   Specify eigenvalues to keep interactively. Note that if%               you set 'interactive' to 'on' or 'gui' then the values%               for 'firstEig' and 'lastEig' will be ignored, but they%               still have to be entered. If the value is 'gui' then the%               same graphical user interface as in FASTICAG will be%               used. Default is 'off'.% verbose       Default is 'on'.%%% EXAMPLE%       [E, D] = pcamat(vectors);%% Note %       The eigenvalues and eigenvectors returned by PCAMAT are not sorted.%% This function is needed by FASTICA and FASTICAG% For historical reasons this version does not sort the eigenvalues or% the eigen vectors in any ways. Therefore neither does the FASTICA or% FASTICAG. Generally it seams that the components returned from% whitening is almost in reversed order. (That means, they usually are,% but sometime they are not - depends on the EIG-command of matlab.)% @(#)$Id: pcamat.m,v 1.5 2003/12/15 18:24:32 jarmo Exp $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Default values:if nargin < 5, s_verbose = 'on'; endif nargin < 4, s_interactive = 'off'; endif nargin < 3, lastEig = size(vectors, 1); endif nargin < 2, firstEig = 1; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Check the optional parameters;switch lower(s_verbose) case 'on'  b_verbose = 1; case 'off'  b_verbose = 0; otherwise  error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose));endswitch lower(s_interactive) case 'on'  b_interactive = 1; case 'off'  b_interactive = 0; case 'gui'  b_interactive = 2; otherwise  error(sprintf('Illegal value [ %s ] for parameter: ''interactive''\n', ...		s_interactive));endoldDimension = size (vectors, 1);if ~(b_interactive)  if lastEig < 1 | lastEig > oldDimension    error(sprintf('Illegal value [ %d ] for parameter: ''lastEig''\n', lastEig));  end  if firstEig < 1 | firstEig > lastEig    error(sprintf('Illegal value [ %d ] for parameter: ''firstEig''\n', firstEig));  endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculate PCA% Calculate the covariance matrix.if b_verbose, fprintf ('Calculating covariance...\n'); endcovarianceMatrix = cov(vectors', 1);% Calculate the eigenvalues and eigenvectors of covariance% matrix.[E, D] = eig (covarianceMatrix);% The rank is determined from the eigenvalues - and not directly by% using the function rank - because function rank uses svd, which% in some cases gives a higher dimensionality than what can be used% with eig later on (eig then gives negative eigenvalues).rankTolerance = 1e-7;maxLastEig = sum (diag (D) > rankTolerance);if maxLastEig == 0,  fprintf (['Eigenvalues of the covariance matrix are' ...	    ' all smaller than tolerance [ %g ].\n' ...	    'Please make sure that your data matrix contains' ...	    ' nonzero values.\nIf the values are very small,' ...	    ' try rescaling the data matrix.\n'], rankTolerance);  error ('Unable to continue, aborting.');end% Sort the eigenvalues - decending.eigenvalues = flipud(sort(diag(D)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interactive part - command-lineif b_interactive == 1  % Show the eigenvalues to the user  hndl_win=figure;  bar(eigenvalues);  title('Eigenvalues');  % ask the range from the user...  % ... and keep on asking until the range is valid :-)  areValuesOK=0;  while areValuesOK == 0    firstEig = input('The index of the largest eigenvalue to keep? (1) ');    lastEig = input(['The index of the smallest eigenvalue to keep? (' ...                    int2str(oldDimension) ') ']);    % Check the new values...    % if they are empty then use default values    if isempty(firstEig), firstEig = 1;end    if isempty(lastEig), lastEig = oldDimension;end    % Check that the entered values are within the range    areValuesOK = 1;    if lastEig < 1 | lastEig > oldDimension      fprintf('Illegal number for the last eigenvalue.\n');      areValuesOK = 0;    end    if firstEig < 1 | firstEig > lastEig      fprintf('Illegal number for the first eigenvalue.\n');      areValuesOK = 0;    end  end  % close the window  close(hndl_win);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interactive part - GUIif b_interactive == 2  % Show the eigenvalues to the user  hndl_win = figure('Color',[0.8 0.8 0.8], ...    'PaperType','a4letter', ...    'Units', 'normalized', ...    'Name', 'FastICA: Reduce dimension', ...    'NumberTitle','off', ...    'Tag', 'f_eig');  h_frame = uicontrol('Parent', hndl_win, ...    'BackgroundColor',[0.701961 0.701961 0.701961], ...    'Units', 'normalized', ...    'Position',[0.13 0.05 0.775 0.17], ...    'Style','frame', ...    'Tag','f_frame');b = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'BackgroundColor',[0.701961 0.701961 0.701961], ...	'HorizontalAlignment','left', ...	'Position',[0.142415 0.0949436 0.712077 0.108507], ...	'String','Give the indices of the largest and smallest eigenvalues of the covariance matrix to be included in the reduced data.', ...	'Style','text', ...	'Tag','StaticText1');e_first = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'Callback',[ ...          'f=round(str2num(get(gcbo, ''String'')));' ...          'if (f < 1), f=1; end;' ...          'l=str2num(get(findobj(''Tag'',''e_last''), ''String''));' ...          'if (f > l), f=l; end;' ...          'set(gcbo, ''String'', int2str(f));' ...          ], ...	'BackgroundColor',[1 1 1], ...	'HorizontalAlignment','right', ...	'Position',[0.284831 0.0678168 0.12207 0.0542535], ...	'Style','edit', ...        'String', '1', ...	'Tag','e_first');b = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'BackgroundColor',[0.701961 0.701961 0.701961], ...	'HorizontalAlignment','left', ...	'Position',[0.142415 0.0678168 0.12207 0.0542535], ...	'String','Range from', ...	'Style','text', ...	'Tag','StaticText2');e_last = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'Callback',[ ...          'l=round(str2num(get(gcbo, ''String'')));' ...          'lmax = get(gcbo, ''UserData'');' ...          'if (l > lmax), l=lmax; fprintf([''The selected value was too large, or the selected eigenvalues were close to zero\n'']); end;' ...          'f=str2num(get(findobj(''Tag'',''e_first''), ''String''));' ...          'if (l < f), l=f; end;' ...          'set(gcbo, ''String'', int2str(l));' ...          ], ...	'BackgroundColor',[1 1 1], ...	'HorizontalAlignment','right', ...	'Position',[0.467936 0.0678168 0.12207 0.0542535], ...	'Style','edit', ...        'String', int2str(maxLastEig), ...        'UserData', maxLastEig, ...	'Tag','e_last');% in the first version oldDimension was used instead of % maxLastEig, but since the program would automatically% drop the eigenvalues afte maxLastEig...b = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'BackgroundColor',[0.701961 0.701961 0.701961], ...	'HorizontalAlignment','left', ...	'Position',[0.427246 0.0678168 0.0406901 0.0542535], ...	'String','to', ...	'Style','text', ...	'Tag','StaticText3');b = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'Callback','uiresume(gcbf)', ...	'Position',[0.630697 0.0678168 0.12207 0.0542535], ...	'String','OK', ...	'Tag','Pushbutton1');b = uicontrol('Parent',hndl_win, ...	'Units','normalized', ...	'Callback',[ ...          'gui_help(''pcamat'');' ...          ], ...	'Position',[0.767008 0.0678168 0.12207 0.0542535], ...	'String','Help', ...	'Tag','Pushbutton2');  h_axes = axes('Position' ,[0.13 0.3 0.775 0.6]);  set(hndl_win, 'currentaxes',h_axes);  bar(eigenvalues);  title('Eigenvalues');  uiwait(hndl_win);  firstEig = str2num(get(e_first, 'String'));  lastEig = str2num(get(e_last, 'String'));  % close the window  close(hndl_win);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% See if the user has reduced the dimension enoughtif lastEig > maxLastEig  lastEig = maxLastEig;  if b_verbose    fprintf('Dimension reduced to %d due to the singularity of covariance matrix\n',...           lastEig-firstEig+1);  endelse  % Reduce the dimensionality of the problem.  if b_verbose    if oldDimension == (lastEig - firstEig + 1)      fprintf ('Dimension not reduced.\n');    else      fprintf ('Reducing dimension...\n');    end  endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drop the smaller eigenvaluesif lastEig < oldDimension  lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1)) / 2;else  lowerLimitValue = eigenvalues(oldDimension) - 1;endlowerColumns = diag(D) > lowerLimitValue;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drop the larger eigenvaluesif firstEig > 1  higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig)) / 2;else  higherLimitValue = eigenvalues(1) + 1;endhigherColumns = diag(D) < higherLimitValue;% Combine the results from aboveselectedColumns = lowerColumns & higherColumns;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print some info for the userif b_verbose  fprintf ('Selected [ %d ] dimensions.\n', sum (selectedColumns));endif sum (selectedColumns) ~= (lastEig - firstEig + 1),  error ('Selected a wrong number of dimensions.');endif b_verbose  fprintf ('Smallest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(lastEig));  fprintf ('Largest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(firstEig));  fprintf ('Sum of removed eigenvalues [ %g ]\n', sum(diag(D) .* ...    (~selectedColumns)));end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Select the colums which correspond to the desired range% of eigenvalues.E = selcol(E, selectedColumns);D = selcol(selcol(D, selectedColumns)', selectedColumns);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Some more informationif b_verbose  sumAll=sum(eigenvalues);  sumUsed=sum(diag(D));  retained = (sumUsed / sumAll) * 100;  fprintf('[ %g ] %% of (non-zero) eigenvalues retained.\n', retained);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function newMatrix = selcol(oldMatrix, maskVector);% newMatrix = selcol(oldMatrix, maskVector);%% Selects the columns of the matrix that marked by one in the given vector.% The maskVector is a column vector.% 15.3.1998if size(maskVector, 1) ~= size(oldMatrix, 2),  error ('The mask vector and matrix are of uncompatible size.');endnumTaken = 0;for i = 1 : size (maskVector, 1),  if maskVector(i, 1) == 1,    takingMask(1, numTaken + 1) = i;    numTaken = numTaken + 1;  endendnewMatrix = oldMatrix(:, takingMask);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -