⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_add.pod

📁 开源的ssl算法openssl,版本0.9.8H
💻 POD
字号:
=pod=head1 NAMEBN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -arithmetic operations on BIGNUMs=head1 SYNOPSIS #include <openssl/bn.h> int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,         BN_CTX *ctx); int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,         BN_CTX *ctx); int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,         BN_CTX *ctx); int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,         BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,         const BIGNUM *m, BN_CTX *ctx); int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);=head1 DESCRIPTIONBN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).I<r> may be the same B<BIGNUM> as I<a> or I<b>.BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).I<r> may be the same B<BIGNUM> as I<a> or I<b>.For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>.BN_sqr() takes the square of I<a> and places the result in I<r>(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.This function is faster than BN_mul(r,a,a).BN_div() divides I<a> by I<d> and places the result in I<dv> and theremainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> maybe B<NULL>, in which case the respective value is not returned.The result is rounded towards zero; thus if I<a> is negative, theremainder will be zero or negative.For division by powers of 2, use BN_rshift(3).BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.BN_nnmod() reduces I<a> modulo I<m> and places the non-negativeremainder in I<r>.BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negativeresult in I<r>.BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places thenon-negative result in I<r>.BN_mod_mul() multiplies I<a> by I<b> and finds the non-negativeremainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may bethe same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms forrepeated computations using the same modulus, seeL<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> andL<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.BN_mod_sqr() takes the square of I<a> modulo B<m> and places theresult in I<r>.BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>(C<r=a^p>). This function is faster than repeated applications ofBN_mul().BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %m>). This function uses less time and space than BN_exp().BN_gcd() computes the greatest common divisor of I<a> and I<b> andplaces the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> orI<b>.For all functions, I<ctx> is a previously allocated B<BN_CTX> used fortemporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>.Unless noted otherwise, the result B<BIGNUM> must be different fromthe arguments.=head1 RETURN VALUESFor all functions, 1 is returned for success, 0 on error. The returnvalue should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.=head1 SEE ALSOL<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>,L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)>=head1 HISTORYBN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),BN_mod_exp() and BN_gcd() are available in all versions of SSLeay andOpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay0.9.1b. BN_exp() appeared in SSLeay 0.9.0.BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added inOpenSSL 0.9.7.=cut

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -