📄 bn_generate_prime.pod
字号:
=pod=head1 NAMEBN_generate_prime, BN_is_prime, BN_is_prime_fasttest - generate primes and test for primality=head1 SYNOPSIS #include <openssl/bn.h> BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add, BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg); int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg); int BN_is_prime_fasttest(const BIGNUM *a, int checks, void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg, int do_trial_division);=head1 DESCRIPTIONBN_generate_prime() generates a pseudo-random prime number of B<num>bits.If B<ret> is not B<NULL>, it will be used to store the number.If B<callback> is not B<NULL>, it is called as follows:=over 4=item *B<callback(0, i, cb_arg)> is called after generating the i-thpotential prime number.=item *While the number is being tested for primality, B<callback(1, j,cb_arg)> is called as described below.=item *When a prime has been found, B<callback(2, i, cb_arg)> is called.=backThe prime may have to fulfill additional requirements for use inDiffie-Hellman key exchange:If B<add> is not B<NULL>, the prime will fulfill the condition p % B<add>== B<rem> (p % B<add> == 1 if B<rem> == B<NULL>) in order to suit a givengenerator.If B<safe> is true, it will be a safe prime (i.e. a prime p sothat (p-1)/2 is also prime).The PRNG must be seeded prior to calling BN_generate_prime().The prime number generation has a negligible error probability.BN_is_prime() and BN_is_prime_fasttest() test if the number B<a> isprime. The following tests are performed until one of them shows thatB<a> is composite; if B<a> passes all these tests, it is consideredprime.BN_is_prime_fasttest(), when called with B<do_trial_division == 1>,first attempts trial division by a number of small primes;if no divisors are found by this test and B<callback> is not B<NULL>,B<callback(1, -1, cb_arg)> is called.If B<do_trial_division == 0>, this test is skipped.Both BN_is_prime() and BN_is_prime_fasttest() perform a Miller-Rabinprobabilistic primality test with B<checks> iterations. IfB<checks == BN_prime_checks>, a number of iterations is used thatyields a false positive rate of at most 2^-80 for random input.If B<callback> is not B<NULL>, B<callback(1, j, cb_arg)> is calledafter the j-th iteration (j = 0, 1, ...). B<ctx> is apre-allocated B<BN_CTX> (to save the overhead of allocating andfreeing the structure in a loop), or B<NULL>.=head1 RETURN VALUESBN_generate_prime() returns the prime number on success, B<NULL> otherwise.BN_is_prime() returns 0 if the number is composite, 1 if it isprime with an error probability of less than 0.25^B<checks>, and-1 on error.The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.=head1 SEE ALSOL<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<rand(3)|rand(3)>=head1 HISTORYThe B<cb_arg> arguments to BN_generate_prime() and to BN_is_prime()were added in SSLeay 0.9.0. The B<ret> argument to BN_generate_prime()was added in SSLeay 0.9.1.BN_is_prime_fasttest() was added in OpenSSL 0.9.5.=cut
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -