⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classify.m

📁 国外编的信号识别的程序
💻 M
字号:
function [c, post] = classify(f, X);%CLASSIFIER/CLASSIFY Categorise new data with CLASSIFIER object.%   [C, POST] = CLASSIFY(F, X) classifies the rows of the n by p%   feature matrix X given the CLASSIFIER object F, where n is the%   number of observations or rows in X and p is the number of%   features or variates. The estimated classes are returned in the%   length n index vector C, while the posterior probabilities for%   each class are given in the n by g matrix POST, where g is the%   number of groups classifiable by F. Each row corresponds to a%   row in X.%%   The generic CLASSIFIER object simply returns a column C containing%   n copies of the class index with the highest prior probability%   while each row of POST is a copy of the prior probability vector%   F.prior.%   Copyright (C) 1999 Michael Kiefte.%   $Log$error(nargchk(2, 2, nargin))if isempty(X) | ~isa(X, 'double') | ~isreal(X) | ndims(X) ~= 2 | ...      any(any(isnan(X) | isinf(X)))  error(['Feature matrix X must be a 2-d array of real, finite' ...	 ' values.'])end[n p] = size(X);g = length(f.counts);if p ~= size(f.range, 2)  error(sprintf('Feature matrix X must have %d columns.', ...		size(f.range, 2)))  endif nargout >= 1  if isempty(f.prior)    [y i] = max(f.counts);    c = i(ones(n, 1), 1);  elseif length(f.prior) == 1    c = ones(n, 1);  else    [y i] = max(f.prior);    c = i(ones(n, 1), 1);  end    if nargout >= 2    if isempty(f.prior)      post = repmat(f.counts/sum(f.counts), n, 1);    elseif length(f.prior) == 1      post = repmat(1/g, n, g);    else      post = repmat(f.prior, n, 1);    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -