📄 qda.m
字号:
function [f, c, post] = qda(X, k, prior, est, nu)%QDA Quadratic Descriminant Analysis.% F = QDA(X, K, PRIOR) returns a quadratic discriminant analysis% object F based on the feature matrix X, class indeces in K and the% prior probabilities in PRIOR where PRIOR is optional. See the help% for QDA's parent object CLASSIFIER for information on the input% arguments X, K and PRIOR.%% In addition to the fields defined by the CLASSIFIER class, F% contains the following fields:%% MEANS: a g by p matrix where g is the number of classes and p is% the number of features or variates. Each row gives the mean vector% for each class. %% SCALE: the p by p by g numeric array in which each p by p matrix% is the scale matrix that transforms the observed within-groups% covariance for the corresponding class to identity. Therefore% F.SCALE(:,:,i)=INV(CHOL(COVX(K==i,:)),1) for maximum-likelihood% estimates (see below) or INV(CHOL(COV(X(K==1,:)))) for ubiased% estimates.%% LDET: the length g vector which gives the log determinants for% each covariance matrix.%% EST: either 0, 1, or 't' representing unbiased, maximum likelihood% or t-parameter estimation respectively as explained below.%% NU: This field is only present if EST is 't'. NU gives the degrees% of freedom for the t-parameter estimation as explained in the next% paragraph.%% QDA(X, K, PRIOR, EST, NU) where EST is one of 'unbiased', 'ml', or% 't', uses either bias-corrected, maximum likelihood or t-parameter% estimation respectively. For t-parameter estimation, an additional% argument, NU, gives the degrees of freedom for the estimator (the% default is 5 if not given). The default estimator is unbiased% estimation (which corresponds to the default for the functions STD% and COV). Unbiased estimation bias corrects the estimate for the% within-groups covariance matrix by a factor of 1/(n(i)-1) where% n(i) is the number of observations in class i (as returned by% F.COUNTS). For maximum likelihood estimation, no correction is% made. For t-parameter estimation, the means and scale matrix are% estimated by an iterative weighted algorithm. When specifying EST,% only the first few disambiguating letters need be given: i.e.,% 'u', 'm' or 't'.%% QDA(X, K, EST) is equivalent to QDA(X, K, [], EST).%% QDA(X, K, OPTS) allows optional arguments to be passed in the% fields of the structure OPTS. Fields that are used by QDA are% PRIOR, EST and NU.%% [F, C, POST] = QDA(X, K, ...) additionally performs leave-one-out% cross-validation on the data in X. C is a length n index vector of% estimated class memberships similar to K corresponding to the% matrix of features X. POST is an n by g matrix of posterior% probabilities. Leave-one-out cross-validation is only defined for% methods 'ml' and 'unbiased'. C and POST will not necessarily% correspond to the output of CROSSVAL(X, K, 'qda', ...) because in% the latter, the prior probabilities are not fixed between% cross-validation estimates unless this is done so explicitly in% the option struct passed to CROSSVAL.%% See also CLASSIFIER, LDA, LOGDA, SOFTMAX, COV, CROSSVAL.%% Example:% %generate artificial data with 4 classes and 3 variates% r = randn(3, 3, 4);% for i = 1:4% % generate random covariance matrices for each class% C(:,:,i) = r(:,:,i)'*r(:,:,i);% end% M = randn(4, 3)*2; % random means% k = ceil(rand(400, 1)*4); % random classes% X = randn(400, 3);% for i = 1:4% X(k==i,:) = X(k==i,:)*chol(C(:,:,i)) + M(k(k==i), :);% end% f = qda(X, k); disp(f)% cov(f), plotcov(f)% plotcov(shrink(f, 1))% g = lda(X, k);% [m alpha] = mcnemar(k, f(X), g(X))%% References:% B. D. Ripley (1996) Pattern Classification and Neural% Networks. Cambridge.% Copyright (c) 1999 Michael Kiefte. % Additionally based on algorithm presented in S-Plus code written% by Ripley and Venables.% $Log$error(nargchk(2, 5, nargin))if nargin > 2 & isstruct(prior) if nargin > 3 error(sprintf(['Cannot have arguments following option struct:\n' ... '%s'], nargin(3, 3, 4))) end [prior est nu] = parseopt(prior, 'prior', 'est', 'nu');elseif nargin < 5 nu = []; if nargin < 4 est = []; if nargin < 3 prior = []; end endendif ischar(prior) nu = est; est = prior; prior = [];end[h G] = classifier(X, k, prior);[n p] = size(X);nj = h.counts;g = length(nj);prior = h.prior;if nargout > 1 cv = 1;else cv = 0;endif isempty(est) est = 0;elseif ~ischar(est) | length(est) ~= size(est, 2) | ... size(est, 1) ~= 1 error('EST must be a string.')else t = find(strncmp(est, {'unbiased', 'ml', 't'}, length(est))); if isempty(t) error('EST must be one of ''unbiased'', ''ml'', or ''t''.') end switch t case 1 est = 0; case 2 est = 1; otherwise est = 't'; endendif est == 't' if isempty(nu) nu = 5; elseif ~isa(nu, 'double') | length(nu) ~= 1 | round(nu) ~= nu | ... nu < 3 | isinf(nu) error(['Degrees of freedom NU must be a finite, integer scalar' ... ' greater than 2.']) elseif cv error('Cannot perform cross-validation with t-estimator.') endelseif ~isempty(nu) error('May specify degrees of freedom NU only with t-estimator.') endM = sparse(1:g, 1:g, 1./nj')*G'*X;S = zeros(p, p, g);ldet = zeros(1, g);for i = 1:g switch est case {0, 1} r = qr((X(k == i,:) - repmat(M(i,:), nj(i), 1)) ... /sqrt(nj(i) - (1-est))); otherwise w = ones(nj(i), 1); Xk = X(k == i,:); c = (nu+p)/(nj(i)*nu); while 1 wold = w; Xc = Xk - repmat(M(i,:), nj(i), 1); r = triu(qr(repmat(sqrt(w*c), 1, p).*Xc)); w = 1./(1+(Xc/r(1:p,:)).^2*repmat(1/nu, p, 1)); M(i,:) = w'*Xk/sum(w); if max(abs(w-wold)) < max(w)*nj(i)*eps break end end end S(:,:,i) = inv(triu(r(1:p,:))); ldet(i) = 2*sum(log(abs(diag(r))));endif cv lc = ldet(ones(n, 1), :); D = zeros(n, g); for i = 1:g D(:,i) = sum(((X - M(i(ones(n, 1)), :)) * S(:,:,i)).^2, 2); end K = 1-est; nc = nj(k)'; idx = (k-1)*n+(1:n)'; lc(idx) = lc(idx) + p*log((nc - K)./(nc - 1 - K)) + ... log(1 - nc./((nc - 1).*(nc - K)).*D(idx)); D(idx) = D(idx) .* (nc.^2.*(nc - 1 - K)) ./ ... ((nc - 1).^2.*(nc - K)) ./ ... (1 - nc./((nc - 1).*(nc - K)).*D(idx)); D = (D + lc)/2 - repmat(log(prior), n, 1); [y c] = min(D, [], 2); if nargout > 2 D = exp(y(:, ones(1, g)) - D); post = D./repmat(sum(D, 2), 1, g); endendf = class(struct('means', M, 'scale', S, 'ldet', ldet, 'est', est, ... 'nu', nu), 'qda', h);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -