⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 国外编的信号识别的程序
💻
字号:
This is version 0.3 of the "Discriminant Analysis Toolbox" with majorbug fixes from the first and second versions and with the addition oflogistic discriminant anlsyis and multinomial classificationfeed-forward neural-network.To install, place the class directories starting with '@' somewhere inyour MATLAB path along with the other .m files listed below.This is a series of .m files implementing linear, quadratic andlogistic discriminant analysis and classification generally followingthe text [1]. References: [1] B. D. Ripley (1996) Pattern Classification and Neural   Networks. Cambridge.The following files are included:   Contents.m          - Contents file   README              - This file   Parent classifier object:   @classifier/classifier.m - Null classifier   @classifier/classify.m   - Classify with null classifier   @classifier/disp.m       - Display CLASSIFIER object   @classifier/display.m    - Display CLASSIFIER object   @classifier/subsref.m    - Access fields of CLASSIFIER object   Linear discriminant analysis:   @lda/classify.m          - Classify with linear discriminants   @lda/cov.m               - Within-groups covariance matrix   @lda/cvar.m              - Canonical variates   @lda/disp.m              - Display LDA object   @lda/display.m           - Display LDA object   @lda/lda.m               - Linear discriminant analysis   @lda/plotcov.m           - Plot covariance ellipsoids   @lda/shrink.m            - Shrink covariance matrix   @lda/subsref.m           - Access fields of LDA object   Logistic discriminant analysis:   @logda/classify.m        - Classify with logistic discriminants   @logda/disp.m            - Display LOGDA object   @logda/display.m         - Display LOGDA object   @logda/logda.m           - Logistic discriminant analysis   @logda/subsref.m         - Access fields of LOGDA object   Quadratic discriminant analysis:   @qda/classify.m          - Classify with quadratic discriminants   @qda/cov.m               - Within-groups covariance matrices   @qda/disp.m              - Display QDA object   @qda/display.m           - Display QDA object   @qda/plotcov.m           - Plot covariance ellipsoids   @qda/qda.m               - Quadratic discriminant analysis   @qda/shrink.m            - Shrink covariance matrices   @qda/subsref.m           - Access fields of QDA object   Multinomial feed-formward neural network:   @softmax/classify.m      - Classify with logistic discriminants   @softmax/disp.m          - Display LOGDA object   @softmax/display.m       - Display LOGDA object   @softmax/logda.m         - Logistic discriminant analysis   @softmax/subsref.m       - Access fields of LOGDA object      Other .m files:   confmat.m                - Confusion matrix   crossval.m               - Cross-validation classification   kmeans.m                 - K-means clustering   mahalanobis.m            - Mahalanobis distance   mcnemar.m                - McNemar tests   parseopt.m               - Get options from struct   plotdr.m                 - Plot decision regions   plotobs.m                - Observation scatter plotThere are examples of how to use some of these function in the helpfor LDA, QDA and LOGDA. Hopefully, this should be enought to get youstarted.The .m files have been tested on MATLAB version 5.3 and definitelywon't work on anything prior to 5.0.This is a work in progress, so if you have any comments or suggestionsfeel free to send me an e-mail.-- Michael Kiefte, June 3, 1999.Contact Information:Michael Kiefte                 e-mail: mkiefte@gpu.srv.ualberta.caDepartment of Linguistics      tel:    +1 780 492 08044-32 Assiniboia Hall           fax:    +1 780 492 0806University of AlbertaEdmonton, AlbertaT6G 2E7 Canada$Log$

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -