⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 userdefinables.cpp

📁 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存
💻 CPP
📖 第 1 页 / 共 3 页
字号:
/***************************************************************/* Single & Multi-Objective Real-Coded Genetic Algorithms Code *//* Author: Kumara Sastry                                       *//* Illinois Genetic Algorithms Laboratory (IlliGAL)            *//* Deparment of General Engineering                            *//* University of Illinois at Urbana-Champaign                  *//* 104 S. Mathews Ave, Urbana, IL 61801                        *//***************************************************************/#include <iostream>#include <iomanip>#include "ga.hpp"#include "random.hpp"#include "globalSetup.hpp"#include <math.h>#define BLANK_STR " \t\n\r"using namespace std;GlobalSetup *globalSetup;Random myRandom;/* Objective function and constraints go here */void globalEvaluate(double *x, double *objArray, double *constraintViolation,		    double *penalty, int *noOfViolations){  int ii;  FILE *outEvals;   for(ii = 0; ii < globalSetup->finalNoOfObjectives; ii++)    objArray[ii] = 0.0;    if(globalSetup->gaType == SGA) {    *objArray = (x[0]*x[0] + x[1] - 11.0)*(x[0]*x[0] + x[1] - 11.0) +      (x[0] + x[1]*x[1] - 7.0)*(x[0] + x[1]*x[1] - 7.0);    constraintViolation[0] = (x[0]-5.0)*(x[0]-5.0) + x[1]*x[1] - 26.0;    if(constraintViolation[0] <= 0.0) constraintViolation[0] = 0.0;        constraintViolation[1] = 4*x[1] + x[2] - 20.0;    if(constraintViolation[1] <= 0.0) constraintViolation[1] = 0.0;  }  else {    objArray[0] = -10*exp(-0.2*sqrt(x[0]*x[0] + x[1]*x[1])) - 10*exp(-0.2*sqrt(x[1]*x[1] + x[2]*x[2]));    objArray[1] = pow(fabs(x[0]),0.8) + pow(fabs(x[1]),0.8) + pow(fabs(x[2]),0.8) + 5.0*sin(x[0]*x[0]*x[0]) + 5.0*sin(x[1]*x[1]*x[1]) + 5.0*sin(x[2]*x[2]*x[2]);  }  *penalty = 0.0;    *noOfViolations = 0;  for(ii = 0; ii < globalSetup->finalNoOfConstraints; ii++) {    if(constraintViolation[ii]) ++(*noOfViolations);    if(globalSetup->constraintMethod == Penalty) {      if(globalSetup->penaltyFunction == Linear) 	*penalty += globalSetup->penaltyWeights[ii]*fabs(constraintViolation[ii]);      else if(globalSetup->penaltyFunction == Quadratic)	*penalty += globalSetup->penaltyWeights[ii]*	  (constraintViolation[ii]*constraintViolation[ii]);    }    else      *penalty += fabs(constraintViolation[ii]);  }  if(globalSetup->savePopulation) {    outEvals = fopen(globalSetup->saveEvalSolutions, "a");    for(ii = 0; ii < globalSetup->noOfDecisionVariables; ii++) {      fprintf(outEvals, "%f\t", x[ii]);    }      for(ii = 0; ii < globalSetup->finalNoOfObjectives; ii++) {      fprintf(outEvals, "%f\t", objArray[ii]);    }    if(globalSetup->finalNoOfConstraints > 0) {      for(ii = 0; ii < globalSetup->finalNoOfConstraints; ii++) {	fprintf(outEvals, "%f\t", constraintViolation[ii]);      }      fprintf(outEvals, "%f", *penalty);    }    fprintf(outEvals, "\n");    fflush(outEvals);    fclose(outEvals);  }}/*  Read a non-comment, non-blank line from the specified file stream  At EOF, it returns NULL.  Otherwise, it returns the pointer to the first token.  (The string just read in is altered by strtok().)*/static char* readOneLine(char *pcBuf, int iMaxSize, FILE *fStream){  char *pToken;    do {    pToken = NULL;        *pcBuf = '\0';    fgets(pcBuf, iMaxSize, fStream);    if (feof(fStream))      break;        // get the first token    pToken = strtok(pcBuf, BLANK_STR);        // if there is no first token, it is a blank line.    // if the first token starts with '#', it is a comment line.  } while ((pToken == NULL) || (*pToken == '#'));     return (pToken);}  int main(int argc, char *argv[]) {  int ii;  const int ciBufSize = 1024;  char *pToken, caBuf[ciBufSize];  FILE *fInput, *fOutput;  if(argc != 2) {    printf("Error! Usage is GAtbx inputfile\n");    exit(1);  }  fInput = fopen(argv[1], "r");  if (fInput == NULL) {    printf("Error! opening file %s\n", argv[1]);    exit(1);  }           globalSetup = new GlobalSetup;    if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  //GA type  if (strcmp("SGA", pToken) == 0) {    globalSetup->gaType = SGA;  }  else if (strcmp("NSGA", pToken) == 0) {    globalSetup->gaType = NSGA;  }  else {    fclose(fInput);    printf("Unknown parameter! It should be either SGA or NSGA\n");    exit(1);  }  // decision variables    // read the number of decision variables  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  // the number can't be less than or equal to zero  if ((globalSetup->noOfDecisionVariables = atoi(pToken)) <= 0) {    fclose(fInput);    printf("Error! number of decision variables should be > 0\n");    exit(1);  }  globalSetup->variableTypes = new VariableType[globalSetup->noOfDecisionVariables];  globalSetup->variableRanges = new double*[(globalSetup->noOfDecisionVariables)];  for(ii = 0; ii < globalSetup->noOfDecisionVariables; ii++) {    // read a line    if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }    // variable type    if (strcmp("double", pToken) == 0) {      globalSetup->variableTypes[ii] = Real;    }    else if (strcmp("int", pToken) == 0) {      globalSetup->variableTypes[ii] = Integer;    }    else {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }        // variable ranges    // allocate memory    globalSetup->variableRanges[ii] = new double[2];    // lower bound    if ((pToken = strtok(NULL, BLANK_STR)) == NULL) {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }    globalSetup->variableRanges[ii][0] = atof(pToken);    // upper bound    if ((pToken = strtok(NULL, BLANK_STR)) == NULL) {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }    globalSetup->variableRanges[ii][1] = atof(pToken);    if(globalSetup->variableRanges[ii][1] <= globalSetup->variableRanges[ii][0]) {      fclose(fInput);      printf("Error! lower bound, %f, must be lower than the upper bound, %f\n", globalSetup->variableRanges[ii][0], globalSetup->variableRanges[ii][1]);      exit(1);    }  }  // objectives    // read the number of objectives  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  // the number can't be less than or equal to zero  if ((globalSetup->noOfRawObjectives = atoi(pToken)) <= 0) {    fclose(fInput);    printf("Error! number of objectives should be > 0\n");    exit(1);  }  globalSetup->finalNoOfObjectives = globalSetup->noOfRawObjectives;  globalSetup->noOfLinearObjectiveCombinations = 0;  globalSetup->typeOfOptimizations = new OptimType[globalSetup->finalNoOfObjectives];  for(ii = 0; ii < globalSetup->finalNoOfObjectives; ii++) {    // read a line    if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }    // optimization type    if (strcmp("Min", pToken) == 0) {      globalSetup->typeOfOptimizations[ii] = Minimization;    }    else if (strcmp("Max", pToken) == 0) {      globalSetup->typeOfOptimizations[ii] = Maximization;    }    else {      fclose(fInput);      printf("Error! optimization type can either be Min or Max\n");      exit(1);    }   }  // constrained variables  // read the number of constrained variables  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  // the number can't be less than zero  if ((globalSetup->noOfRawConstraints = atoi(pToken)) < 0) {    fclose(fInput);    printf("Error! number of constraints should be >= 0\n");    exit(1);  }  else if (globalSetup->noOfRawConstraints == 0) {    if ((strlen(pToken) != 1) || (*pToken != '0')) {      fclose(fInput);      printf("Error! number of constraints should be >= 0\n");      exit(1);    }  }  globalSetup->noOfLinearConstraintCombinations = 0;  globalSetup->finalNoOfConstraints = globalSetup->noOfRawConstraints;    // penalty weights  globalSetup->penaltyWeights = new double[globalSetup->finalNoOfConstraints];  for(ii = 0; ii < globalSetup->finalNoOfConstraints; ii++) {    // read a line    if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {      fclose(fInput);      printf("Error in the input file, please refer to the documentation\n");      exit(1);    }    globalSetup->penaltyWeights[ii] = atof(pToken);  }  // general parameters  // population size  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  if(strcmp("default", pToken) == 0) {    // Use a default value of 30*ell*log(ell);    printf("Using default population-sizing thumbrule: n = 30*ell*log(ell)\n");    // Take care of small problem sizes where log(ell) < 1    if(globalSetup->noOfDecisionVariables > 2)      globalSetup->populationSize = (int)(30*(globalSetup->noOfDecisionVariables)*log((double)(globalSetup->noOfDecisionVariables)));    else      globalSetup->populationSize = (int)(30*(globalSetup->noOfDecisionVariables));    //Round it to next nearest tenth number    if((globalSetup->populationSize)%10) globalSetup->populationSize += (globalSetup->populationSize)%10;    printf("The population size used is: %d\n", globalSetup->populationSize);  }  // the number can't be less than or equal to zero  else if ((globalSetup->populationSize = atoi(pToken)) <= 0) {    fclose(fInput);    printf("The population size must be > 0\n");    exit(1);  }  else if ((globalSetup->populationSize % 2) != 0) {    // the number can't be an odd number    fclose(fInput);    printf("Error! population size must be an even number\n");    exit(1);  }  // maximum generations  // the number can't be less than or equal to zero  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  if(strcmp("default", pToken) == 0) {    // Use a default value of 6*ell;    printf("Using default convergence-time thumbrule: tc = 6*ell\n");    globalSetup->maxGenerations = 6*(globalSetup->noOfDecisionVariables);    if((globalSetup->maxGenerations)%10) globalSetup->maxGenerations += 10-(globalSetup->maxGenerations)%10;    printf("The maximum number of generations set is: %d\n", globalSetup->maxGenerations);  }  else if ((globalSetup->maxGenerations = atoi(pToken)) <= 0) {    fclose(fInput);    printf("Error! maximum number of generations must be > 0\n");    exit(1);  }  // replace proportion  // the number should be in (0.0, 1.0]  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  if(strcmp("default", pToken) == 0) {    // Setting a default value of 0.9    printf("Using default replacement proportion of 0.9\n");    globalSetup->replaceProportion = 0.9;  }  else if (((globalSetup->replaceProportion = atof(pToken)) <= 0.0) || (globalSetup->replaceProportion > 1.0)) {    fclose(fInput);    printf("Error! proportion of parent population that should be replaced must be > 0 and <= 1\n");    exit(1);  }  // niching (multimodal handling)  if ((pToken = readOneLine(caBuf, ciBufSize, fInput)) == NULL) {    fclose(fInput);    printf("Error in the input file, please refer to the documentation\n");    exit(1);  }  if(strcmp("default", pToken) == 0) {    // Using NoNiching by default    printf("No niching method is used by default\n");    globalSetup->nichingType = NoNiching;  }  // niching type  else if (strcmp("NoNiching", pToken) == 0) {    globalSetup->nichingType = NoNiching;  globalSetup->nichingParameters = NULL;  }  else if (strcmp("Sharing", pToken) == 0) {    globalSetup->nichingType = Sharing;  }  else if (strcmp("RTS", pToken) == 0) {    globalSetup->nichingType = RTS;  }  else if (strcmp("DeterministicCrowding", pToken) == 0) {    globalSetup->nichingType = DeterministicCrowding;  }  else {    fclose(fInput);    printf("Error! valid niching types are: NoNiching, Sharing, RTS, and DeterministicCrowding\n");    exit(1);  }  // check niching type  if ((globalSetup->gaType == NSGA) && (globalSetup->nichingType != NoNiching)) {    fclose(fInput);    printf("Error! valid choice for niching types with NSGA is: NoNiching\n");    exit(1);  }  // read niching parameters  switch(globalSetup->nichingType) {  case NoNiching:  case DeterministicCrowding:    // no extra parameters    break;  case Sharing:    {      globalSetup->nichingParameters = new double[2];      if ((pToken = strtok(NULL, BLANK_STR)) == NULL) {	printf("Using default sharing radius of 4.24\n");	((double *)(globalSetup->nichingParameters))[0] = 4.24;      }      else 	((double *)globalSetup->nichingParameters)[0] = atof(pToken);      if (((double*)globalSetup->nichingParameters)[0] <= 0.0) {	fclose(fInput);	printf("Error! niching radius must be > 0\n");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -