📄 pso-matlab programe.txt
字号:
% m is the number of particle
% n is the dimension of variable
% x is a m*n matrix
% pbx is a m*n matrix
% v is a m*n matrix
% gbx is a l*n matrix
% pbf is a m*l matrix
% gbf is a number
%clear all
n=2;
m=50;
c1=2;
c2=2;
w=1;
vmax=0.5;
%随机m个粒子
x=-1+2*rand(m,n);
v=0.5*rand(m,n);
%适应值计算
for i=1:m
f(i)=obf_pso(x(i,;),n);
end
%找出个体极值和全局极值
pbx=x;
pbf=f;
[gbf i]=min(pbf);
gbx=pbx(i,:);
for i=1:m;
v(i,:)=w*v(i,:)+c1*rand*(pbx(i,:)-x(i,:))+c2*rand*(gbx-x(i,:));
for j=1:n
if v(i,j)>vmax
v(i,j)=vmax;
elseif v(i,j)<-vmax
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
%开始循环迭代
% for k=1:1000
k=0;
while abs(gbf)>0.00001
for i=1:m
f(i)=obf_pso(x(i,:),n);
end
for i=1:m
if f(i)<pbf(i)
pbf(i)=f(i);
pbx(i,:)=x(i,:);
end
end
[gbf i]=min(pbf);
gbx=pbx(i,:);
for i=1:m
v(i,:)=w*v(i,:)+c1*rand*(pbx(i,:)-x(i,:))+c2*rand*(gbx-x(i,:));
for j=1:n
if v(i,j)>vmax
v(i,j)=vmax;
else if v(i,j)<-vmax
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
k=k+1;
end
gbx %最优解
gbf %最优值
k%迭代次数
function f=obf_pso(y,n)
%不同的目标函数值
f=y(1)^2+y(2)^2;
% f=100*(y(1)*y(1)-y(2))^2+y(1)^2;
% f=sin(sqrt(y(1)^2+y(2)^2)^2-0.5)/(1+0.001*(y(1)^2+y(2)^2))^2+0.5;
% f=y(1)^2+2*y(2)^2-0.3*cos(3*pi*y(1))-0.4*cos(pi*y(2))+0.7;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -