📄 fit_ml_laplace.m
字号:
function result = fit_ML_laplace( x,hAx )
% fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
% Given the samples of a laplace distribution, the PDF parameter is found
%
% fits data to the probability of the form:
% p(x) = 1/(2*b)*exp(-abs(x-u)/b)
% with parameters: u,b
%
% format: result = fit_ML_laplace( x,hAx )
%
% input: x - vector, samples with laplace distribution to be parameterized
% hAx - handle of an axis, on which the fitted distribution is plotted
% if h is given empty, a figure is created.
%
% output: result - structure with the fields
% u,b - fitted parameters
% CRB_b - Cram?r-Rao Bound for the estimator value
% RMS - RMS error of the estimation
% type - 'ML'
%
%
% Algorithm
% ===========
%
% We use the ML algorithm to estimate the PDF from the samples.
% The laplace destribution is given by:
%
% p(x;u,b) = 1/(2*b)*exp(-abs(x-u)/b)
%
% where x are the samples which distribute by the function p(x;u,b)
% and are assumed to be i.i.d !!!
%
% The ML estimator is given by:
%
% a = parameters vector = [u,b]
% f(Xn,a) = 1/(2*b)*exp(-abs(Xn-u)/b)
% L(a) = f(X,a) = product_by_n( f(Xn,a) )
% = (2*b)^(-N) * exp( - sum( abs(Xn-u) )/b )
% log(L(a)) = -N*log(2*b) - sum( abs(Xn-u) )/b
%
% The maximum likelihood point is found by the derivative of log(L(a)) with respect to "a":
%
% diff(log(L(a)),b) = N/(b^2) * ( sum( abs(Xn-u) )/N - b )
% = J(b) * (b_estimation - b)
% diff(log(L(a)),m) = (1/b) * sum( diff( abs(Xn-u),u ) ) => can't obtain a derivative
% But, u is the mean of the distribution, and therefore => u = mean(Xn)
%
%
% Therefore, the (efficient) estimators are given by:
%
% u = sum( Xn )/N
% b = sum( abs(Xn-u) )/N
%
% The Cram?r-Rao Bounds for these estimator are:
%
% VAR( m ) = ?
% VAR( b ) = 1/J(b) = b^2 / N
%
% NOTE: the ML estimator does not detect a deviation from the model.
% therefore, check the RMS value !
%
if (nargin<1)
error( 'fit_ML_laplace - insufficient input arguments' );
end
% Estimation
% =============
x = x(:); % should be column vectors !
N = length(x);
u = sum( x )/N;
b = sum(abs(x-u))/N;
CRB_b = b^2 / N;
[n,x_c] = hist( x,100 );
n = n / sum(n*abs(x_c(2)-x_c(1)));
y = 1/(2*b)*exp(-abs(x_c-u)/b);
RMS = sqrt( (y-n)*((y-n)')/ (x_c(2)-x_c(1))^2 / (length(x_c)-1) );
% finish summarizing results
% ============================
result = struct( 'u',u,'b',b,'CRB_b',CRB_b,'RMS',RMS,'type','ML' );
% plot distribution if asked for
% ===============================
if (nargin>1)
xspan = linspace(min(x),max(x),100);
if ishandle( hAx )
plot_laplace( xspan,result,hAx,1 );
else
figure;
plot_laplace( xspan,result,gca,1 );
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -