⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussian_cdf.cpp

📁 移动机器人SLAM,参考一位外国人的硕士论文
💻 CPP
字号:
// this is taken from GSL 1.8 and modified only slightly/* cdf/gauss.c * * Copyright (C) 2002, 2004 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA. *//* * Computes the cumulative distribution function for the Gaussian * distribution using a rational function approximation.  The * computation is for the standard Normal distribution, i.e., mean 0 * and standard deviation 1. If you want to compute Pr(X < t) for a * Gaussian random variable X with non-zero mean m and standard * deviation sd not equal to 1, find gsl_cdf_ugaussian ((t-m)/sd). * This approximation is accurate to at least double precision. The * accuracy was verified with a pari-gp script.  The largest error * found was about 1.4E-20. The coefficients were derived by Cody. * * References: * * W.J. Cody. "Rational Chebyshev Approximations for the Error * Function," Mathematics of Computation, v23 n107 1969, 631-637. * * W. Fraser, J.F Hart. "On the Computation of Rational Approximations * to Continuous Functions," Communications of the ACM, v5 1962. * * W.J. Kennedy Jr., J.E. Gentle. "Statistical Computing." Marcel Dekker. 1980. *  *   */#include <math.h>#ifndef M_2_SQRTPI#define M_2_SQRTPI 1.12837916709551257389615890312      /* 2/sqrt(pi) */#endif#ifndef M_SQRT1_2#define M_SQRT1_2  0.70710678118654752440084436210      /* sqrt(1/2) */#endif#ifndef M_1_SQRT2PI#define M_1_SQRT2PI (M_2_SQRTPI * M_SQRT1_2 / 2.0)#endif#ifndef M_SQRT2#define M_SQRT2    1.41421356237309504880168872421      /* sqrt(2) */#endif#define SQRT32 (4.0 * M_SQRT2)/* * IEEE double precision dependent constants. * * GAUSS_EPSILON: Smallest positive value such that  *                gsl_cdf_gaussian(x) > 0.5. * GAUSS_XUPPER: Largest value x such that gsl_cdf_gaussian(x) < 1.0. * GAUSS_XLOWER: Smallest value x such that gsl_cdf_gaussian(x) > 0.0. */#define GSL_DBL_EPSILON        2.2204460492503131e-16#define GAUSS_EPSILON  (GSL_DBL_EPSILON / 2)#define GAUSS_XUPPER (8.572)#define GAUSS_XLOWER (-37.519)#define GAUSS_SCALE (16.0)static doubleget_del (double x, double rational){  double xsq = 0.0;  double del = 0.0;  double result = 0.0;  xsq = floor (x * GAUSS_SCALE) / GAUSS_SCALE;  del = (x - xsq) * (x + xsq);  del *= 0.5;  result = exp (-0.5 * xsq * xsq) * exp (-1.0 * del) * rational;  return result;}/* * Normal cdf for fabs(x) < 0.66291 */static doublegauss_small (const double x){  unsigned int i;  double result = 0.0;  double xsq;  double xnum;  double xden;  const double a[5] = {    2.2352520354606839287,    161.02823106855587881,    1067.6894854603709582,    18154.981253343561249,    0.065682337918207449113  };  const double b[4] = {    47.20258190468824187,    976.09855173777669322,    10260.932208618978205,    45507.789335026729956  };  xsq = x * x;  xnum = a[4] * xsq;  xden = xsq;  for (i = 0; i < 3; i++)    {      xnum = (xnum + a[i]) * xsq;      xden = (xden + b[i]) * xsq;    }  result = x * (xnum + a[3]) / (xden + b[3]);  return result;}/* * Normal cdf for 0.66291 < fabs(x) < sqrt(32). */static doublegauss_medium (const double x){  unsigned int i;  double temp = 0.0;  double result = 0.0;  double xnum;  double xden;  double absx;  const double c[9] = {    0.39894151208813466764,    8.8831497943883759412,    93.506656132177855979,    597.27027639480026226,    2494.5375852903726711,    6848.1904505362823326,    11602.651437647350124,    9842.7148383839780218,    1.0765576773720192317e-8  };  const double d[8] = {    22.266688044328115691,    235.38790178262499861,    1519.377599407554805,    6485.558298266760755,    18615.571640885098091,    34900.952721145977266,    38912.003286093271411,    19685.429676859990727  };  absx = fabs (x);  xnum = c[8] * absx;  xden = absx;  for (i = 0; i < 7; i++)    {      xnum = (xnum + c[i]) * absx;      xden = (xden + d[i]) * absx;    }  temp = (xnum + c[7]) / (xden + d[7]);  result = get_del (x, temp);  return result;}/* * Normal cdf for  * {sqrt(32) < x < GAUSS_XUPPER} union { GAUSS_XLOWER < x < -sqrt(32) }. */static doublegauss_large (const double x){  int i;  double result;  double xsq;  double temp;  double xnum;  double xden;  double absx;  const double p[6] = {    0.21589853405795699,    0.1274011611602473639,    0.022235277870649807,    0.001421619193227893466,    2.9112874951168792e-5,    0.02307344176494017303  };  const double q[5] = {    1.28426009614491121,    0.468238212480865118,    0.0659881378689285515,    0.00378239633202758244,    7.29751555083966205e-5  };  absx = fabs (x);  xsq = 1.0 / (x * x);  xnum = p[5] * xsq;  xden = xsq;  for (i = 0; i < 4; i++)    {      xnum = (xnum + p[i]) * xsq;      xden = (xden + q[i]) * xsq;    }  temp = xsq * (xnum + p[4]) / (xden + q[4]);  temp = (M_1_SQRT2PI - temp) / absx;  result = get_del (x, temp);  return result;}doublegsl_cdf_ugaussian_P (const double x){  double result;  double absx = fabs (x);  if (absx < GAUSS_EPSILON)    {      result = 0.5;      return result;    }  else if (absx < 0.66291)    {      result = 0.5 + gauss_small (x);      return result;    }  else if (absx < SQRT32)    {      result = gauss_medium (x);      if (x > 0.0)        {          result = 1.0 - result;        }      return result;    }  else if (x > GAUSS_XUPPER)    {      result = 1.0;      return result;    }  else if (x < GAUSS_XLOWER)    {      result = 0.0;      return result;    }  else    {      result = gauss_large (x);      if (x > 0.0)        {          result = 1.0 - result;        }    }  return result;}doublegsl_cdf_ugaussian_Q (const double x){  double result;  double absx = fabs (x);  if (absx < GAUSS_EPSILON)    {      result = 0.5;      return result;    }  else if (absx < 0.66291)    {      result = gauss_small (x);      if (x < 0.0)        {          result = fabs (result) + 0.5;        }      else        {          result = 0.5 - result;        }      return result;    }  else if (absx < SQRT32)    {      result = gauss_medium (x);      if (x < 0.0)        {          result = 1.0 - result;        }      return result;    }  else if (x > -(GAUSS_XLOWER))    {      result = 0.0;      return result;    }  else if (x < -(GAUSS_XUPPER))    {      result = 1.0;      return result;    }  else    {      result = gauss_large (x);      if (x < 0.0)        {          result = 1.0 - result;        }    }  return result;}doublegsl_cdf_gaussian_P (const double x, const double sigma){  return gsl_cdf_ugaussian_P (x / sigma);}doublegsl_cdf_gaussian_Q (const double x, const double sigma){  return gsl_cdf_ugaussian_Q (x / sigma);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -