⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jama_svd.h

📁 一个矩阵计算的库 包括几乎所有需要的矩阵运算 对3d计算和图形处理有很大帮助
💻 H
字号:
#ifndef JAMA_SVD_H#define JAMA_SVD_H#include "tnt_array1d.h"#include "tnt_array1d_utils.h"#include "tnt_array2d.h"#include "tnt_array2d_utils.h"#include "tnt_math_utils.h"#include <algorithm>// for min(), max() below#include <cmath>// for abs() belowusing namespace TNT;using namespace std;namespace JAMA{   /** Singular Value Decomposition.   <P>   For an m-by-n matrix A with m >= n, the singular value decomposition is   an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and   an n-by-n orthogonal matrix V so that A = U*S*V'.   <P>   The singular values, sigma[k] = S[k][k], are ordered so that   sigma[0] >= sigma[1] >= ... >= sigma[n-1].   <P>   The singular value decompostion always exists, so the constructor will   never fail.  The matrix condition number and the effective numerical   rank can be computed from this decomposition.   <p>	(Adapted from JAMA, a Java Matrix Library, developed by jointly 	by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama).   */template <class Real>class SVD {	Array2D<Real> U, V;	Array1D<Real> s;	int m, n;  public:   SVD (const Array2D<Real> &Arg) {      m = Arg.dim1();      n = Arg.dim2();      int nu = min(m,n);      s = Array1D<Real>(min(m+1,n));       U = Array2D<Real>(m, nu, Real(0));      V = Array2D<Real>(n,n);      Array1D<Real> e(n);      Array1D<Real> work(m);	  Array2D<Real> A(Arg.copy());      int wantu = 1;  					/* boolean */      int wantv = 1;  					/* boolean */	  int i=0, j=0, k=0;      // Reduce A to bidiagonal form, storing the diagonal elements      // in s and the super-diagonal elements in e.      int nct = min(m-1,n);      int nrt = max(0,min(n-2,m));      for (k = 0; k < max(nct,nrt); k++) {         if (k < nct) {            // Compute the transformation for the k-th column and            // place the k-th diagonal in s[k].            // Compute 2-norm of k-th column without under/overflow.            s[k] = 0;            for (i = k; i < m; i++) {               s[k] = hypot(s[k],A[i][k]);            }            if (s[k] != 0.0) {               if (A[k][k] < 0.0) {                  s[k] = -s[k];               }               for (i = k; i < m; i++) {                  A[i][k] /= s[k];               }               A[k][k] += 1.0;            }            s[k] = -s[k];         }         for (j = k+1; j < n; j++) {            if ((k < nct) && (s[k] != 0.0))  {            // Apply the transformation.               double t = 0;               for (i = k; i < m; i++) {                  t += A[i][k]*A[i][j];               }               t = -t/A[k][k];               for (i = k; i < m; i++) {                  A[i][j] += t*A[i][k];               }            }            // Place the k-th row of A into e for the            // subsequent calculation of the row transformation.            e[j] = A[k][j];         }         if (wantu & (k < nct)) {            // Place the transformation in U for subsequent back            // multiplication.            for (i = k; i < m; i++) {               U[i][k] = A[i][k];            }         }         if (k < nrt) {            // Compute the k-th row transformation and place the            // k-th super-diagonal in e[k].            // Compute 2-norm without under/overflow.            e[k] = 0;            for (i = k+1; i < n; i++) {               e[k] = hypot(e[k],e[i]);            }            if (e[k] != 0.0) {               if (e[k+1] < 0.0) {                  e[k] = -e[k];               }               for (i = k+1; i < n; i++) {                  e[i] /= e[k];               }               e[k+1] += 1.0;            }            e[k] = -e[k];            if ((k+1 < m) & (e[k] != 0.0)) {            // Apply the transformation.               for (i = k+1; i < m; i++) {                  work[i] = 0.0;               }               for (j = k+1; j < n; j++) {                  for (i = k+1; i < m; i++) {                     work[i] += e[j]*A[i][j];                  }               }               for (j = k+1; j < n; j++) {                  double t = -e[j]/e[k+1];                  for (i = k+1; i < m; i++) {                     A[i][j] += t*work[i];                  }               }            }            if (wantv) {            // Place the transformation in V for subsequent            // back multiplication.               for (i = k+1; i < n; i++) {                  V[i][k] = e[i];               }            }         }      }      // Set up the final bidiagonal matrix or order p.      int p = min(n,m+1);      if (nct < n) {         s[nct] = A[nct][nct];      }      if (m < p) {         s[p-1] = 0.0;      }      if (nrt+1 < p) {         e[nrt] = A[nrt][p-1];      }      e[p-1] = 0.0;      // If required, generate U.      if (wantu) {         for (j = nct; j < nu; j++) {            for (i = 0; i < m; i++) {               U[i][j] = 0.0;            }            U[j][j] = 1.0;         }         for (k = nct-1; k >= 0; k--) {            if (s[k] != 0.0) {               for (j = k+1; j < nu; j++) {                  double t = 0;                  for (i = k; i < m; i++) {                     t += U[i][k]*U[i][j];                  }                  t = -t/U[k][k];                  for (i = k; i < m; i++) {                     U[i][j] += t*U[i][k];                  }               }               for (i = k; i < m; i++ ) {                  U[i][k] = -U[i][k];               }               U[k][k] = 1.0 + U[k][k];               for (i = 0; i < k-1; i++) {                  U[i][k] = 0.0;               }            } else {               for (i = 0; i < m; i++) {                  U[i][k] = 0.0;               }               U[k][k] = 1.0;            }         }      }      // If required, generate V.      if (wantv) {         for (k = n-1; k >= 0; k--) {            if ((k < nrt) & (e[k] != 0.0)) {               for (j = k+1; j < nu; j++) {                  double t = 0;                  for (i = k+1; i < n; i++) {                     t += V[i][k]*V[i][j];                  }                  t = -t/V[k+1][k];                  for (i = k+1; i < n; i++) {                     V[i][j] += t*V[i][k];                  }               }            }            for (i = 0; i < n; i++) {               V[i][k] = 0.0;            }            V[k][k] = 1.0;         }      }      // Main iteration loop for the singular values.      int pp = p-1;      int iter = 0;      double eps = pow(2.0,-52.0);      while (p > 0) {         int k=0;		 int kase=0;         // Here is where a test for too many iterations would go.         // This section of the program inspects for         // negligible elements in the s and e arrays.  On         // completion the variables kase and k are set as follows.         // kase = 1     if s(p) and e[k-1] are negligible and k<p         // kase = 2     if s(k) is negligible and k<p         // kase = 3     if e[k-1] is negligible, k<p, and         //              s(k), ..., s(p) are not negligible (qr step).         // kase = 4     if e(p-1) is negligible (convergence).         for (k = p-2; k >= -1; k--) {            if (k == -1) {               break;            }            if (abs(e[k]) <= eps*(abs(s[k]) + abs(s[k+1]))) {               e[k] = 0.0;               break;            }         }         if (k == p-2) {            kase = 4;         } else {            int ks;            for (ks = p-1; ks >= k; ks--) {               if (ks == k) {                  break;               }               double t = (ks != p ? abs(e[ks]) : 0.) +                           (ks != k+1 ? abs(e[ks-1]) : 0.);               if (abs(s[ks]) <= eps*t)  {                  s[ks] = 0.0;                  break;               }            }            if (ks == k) {               kase = 3;            } else if (ks == p-1) {               kase = 1;            } else {               kase = 2;               k = ks;            }         }         k++;         // Perform the task indicated by kase.         switch (kase) {            // Deflate negligible s(p).            case 1: {               double f = e[p-2];               e[p-2] = 0.0;               for (j = p-2; j >= k; j--) {                  double t = hypot(s[j],f);                  double cs = s[j]/t;                  double sn = f/t;                  s[j] = t;                  if (j != k) {                     f = -sn*e[j-1];                     e[j-1] = cs*e[j-1];                  }                  if (wantv) {                     for (i = 0; i < n; i++) {                        t = cs*V[i][j] + sn*V[i][p-1];                        V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];                        V[i][j] = t;                     }                  }               }            }            break;            // Split at negligible s(k).            case 2: {               double f = e[k-1];               e[k-1] = 0.0;               for (j = k; j < p; j++) {                  double t = hypot(s[j],f);                  double cs = s[j]/t;                  double sn = f/t;                  s[j] = t;                  f = -sn*e[j];                  e[j] = cs*e[j];                  if (wantu) {                     for (i = 0; i < m; i++) {                        t = cs*U[i][j] + sn*U[i][k-1];                        U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];                        U[i][j] = t;                     }                  }               }            }            break;            // Perform one qr step.            case 3: {               // Calculate the shift.                  double scale = max(max(max(max(                       abs(s[p-1]),abs(s[p-2])),abs(e[p-2])),                        abs(s[k])),abs(e[k]));               double sp = s[p-1]/scale;               double spm1 = s[p-2]/scale;               double epm1 = e[p-2]/scale;               double sk = s[k]/scale;               double ek = e[k]/scale;               double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;               double c = (sp*epm1)*(sp*epm1);               double shift = 0.0;               if ((b != 0.0) || (c != 0.0)) {                  shift = sqrt(b*b + c);                  if (b < 0.0) {                     shift = -shift;                  }                  shift = c/(b + shift);               }               double f = (sk + sp)*(sk - sp) + shift;               double g = sk*ek;                  // Chase zeros.                  for (j = k; j < p-1; j++) {                  double t = hypot(f,g);                  double cs = f/t;                  double sn = g/t;                  if (j != k) {                     e[j-1] = t;                  }                  f = cs*s[j] + sn*e[j];                  e[j] = cs*e[j] - sn*s[j];                  g = sn*s[j+1];                  s[j+1] = cs*s[j+1];                  if (wantv) {                     for (i = 0; i < n; i++) {                        t = cs*V[i][j] + sn*V[i][j+1];                        V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];                        V[i][j] = t;                     }                  }                  t = hypot(f,g);                  cs = f/t;                  sn = g/t;                  s[j] = t;                  f = cs*e[j] + sn*s[j+1];                  s[j+1] = -sn*e[j] + cs*s[j+1];                  g = sn*e[j+1];                  e[j+1] = cs*e[j+1];                  if (wantu && (j < m-1)) {                     for (i = 0; i < m; i++) {                        t = cs*U[i][j] + sn*U[i][j+1];                        U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];                        U[i][j] = t;                     }                  }               }               e[p-2] = f;               iter = iter + 1;            }            break;            // Convergence.            case 4: {               // Make the singular values positive.                  if (s[k] <= 0.0) {                  s[k] = (s[k] < 0.0 ? -s[k] : 0.0);                  if (wantv) {                     for (i = 0; i <= pp; i++) {                        V[i][k] = -V[i][k];                     }                  }               }                  // Order the singular values.                  while (k < pp) {                  if (s[k] >= s[k+1]) {                     break;                  }                  double t = s[k];                  s[k] = s[k+1];                  s[k+1] = t;                  if (wantv && (k < n-1)) {                     for (i = 0; i < n; i++) {                        t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;                     }                  }                  if (wantu && (k < m-1)) {                     for (i = 0; i < m; i++) {                        t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;                     }                  }                  k++;               }               iter = 0;               p--;            }            break;         }      }   }   void getU (Array2D<Real> &A)    {   	  int minm = min(m+1,n);	  A = Array2D<Real>(m, minm);	  for (int i=0; i<m; i++)	  	for (int j=0; j<minm; j++)			A[i][j] = U[i][j];   	   }   /* Return the right singular vectors */   void getV (Array2D<Real> &A)    {   	  A = V;   }   /** Return the one-dimensional array of singular values */   void getSingularValues (Array1D<Real> &x)    {      x = s;   }   /** Return the diagonal matrix of singular values   @return     S   */   void getS (Array2D<Real> &A) {   	  A = Array2D<Real>(n,n);      for (int i = 0; i < n; i++) {         for (int j = 0; j < n; j++) {            A[i][j] = 0.0;         }         A[i][i] = s[i];      }   }   /** Two norm  (max(S)) */   double norm2 () {      return s[0];   }   /** Two norm of condition number (max(S)/min(S)) */   double cond () {      return s[0]/s[min(m,n)-1];   }   /** Effective numerical matrix rank   @return     Number of nonnegligible singular values.   */   int rank ()    {      double eps = pow(2.0,-52.0);      double tol = max(m,n)*s[0]*eps;      int r = 0;      for (int i = 0; i < s.dim(); i++) {         if (s[i] > tol) {            r++;         }      }      return r;   }};}#endif// JAMA_SVD_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -