⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tnt_array2d_utils.h

📁 一个矩阵计算的库 包括几乎所有需要的矩阵运算 对3d计算和图形处理有很大帮助
💻 H
字号:
/*** Template Numerical Toolkit (TNT)** Mathematical and Computational Sciences Division* National Institute of Technology,* Gaithersburg, MD USA*** This software was developed at the National Institute of Standards and* Technology (NIST) by employees of the Federal Government in the course* of their official duties. Pursuant to title 17 Section 105 of the* United States Code, this software is not subject to copyright protection* and is in the public domain. NIST assumes no responsibility whatsoever for* its use by other parties, and makes no guarantees, expressed or implied,* about its quality, reliability, or any other characteristic.**/#ifndef TNT_ARRAY2D_UTILS_H#define TNT_ARRAY2D_UTILS_H#include <cstdlib>#include <cassert>namespace TNT{template <class T>std::ostream& operator<<(std::ostream &s, const Array2D<T> &A){    int M=A.dim1();    int N=A.dim2();    s << M << " " << N << "\n";    for (int i=0; i<M; i++)    {        for (int j=0; j<N; j++)        {            s << A[i][j] << " ";        }        s << "\n";    }    return s;}template <class T>std::istream& operator>>(std::istream &s, Array2D<T> &A){    int M, N;    s >> M >> N;	Array2D<T> B(M,N);    for (int i=0; i<M; i++)        for (int j=0; j<N; j++)        {            s >>  B[i][j];        }	A = B;    return s;}template <class T>Array2D<T> operator+(const Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() != m ||  B.dim2() != n )		return Array2D<T>();	else	{		Array2D<T> C(m,n);		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				C[i][j] = A[i][j] + B[i][j];		}		return C;	}}template <class T>Array2D<T> operator-(const Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() != m ||  B.dim2() != n )		return Array2D<T>();	else	{		Array2D<T> C(m,n);		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				C[i][j] = A[i][j] - B[i][j];		}		return C;	}}template <class T>Array2D<T> operator*(const Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() != m ||  B.dim2() != n )		return Array2D<T>();	else	{		Array2D<T> C(m,n);		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				C[i][j] = A[i][j] * B[i][j];		}		return C;	}}template <class T>Array2D<T> operator/(const Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() != m ||  B.dim2() != n )		return Array2D<T>();	else	{		Array2D<T> C(m,n);		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				C[i][j] = A[i][j] / B[i][j];		}		return C;	}}template <class T>Array2D<T>&  operator+=(Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() == m ||  B.dim2() == n )	{		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				A[i][j] += B[i][j];		}	}	return A;}template <class T>Array2D<T>&  operator-=(Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() == m ||  B.dim2() == n )	{		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				A[i][j] -= B[i][j];		}	}	return A;}template <class T>Array2D<T>&  operator*=(Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() == m ||  B.dim2() == n )	{		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				A[i][j] *= B[i][j];		}	}	return A;}template <class T>Array2D<T>&  operator/=(Array2D<T> &A, const Array2D<T> &B){	int m = A.dim1();	int n = A.dim2();	if (B.dim1() == m ||  B.dim2() == n )	{		for (int i=0; i<m; i++)		{			for (int j=0; j<n; j++)				A[i][j] /= B[i][j];		}	}	return A;}/**    Matrix Multiply:  compute C = A*B, where C[i][j]    is the dot-product of row i of A and column j of B.    @param A an (m x n) array    @param B an (n x k) array    @return the (m x k) array A*B, or a null array (0x0)        if the matrices are non-conformant (i.e. the number        of columns of A are different than the number of rows of B.)*/template <class T>Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B){    if (A.dim2() != B.dim1())        return Array2D<T>();    int M = A.dim1();    int N = A.dim2();    int K = B.dim2();    Array2D<T> C(M,K);    for (int i=0; i<M; i++)        for (int j=0; j<K; j++)        {            T sum = 0;            for (int k=0; k<N; k++)                sum += A[i][k] * B [k][j];            C[i][j] = sum;        }    return C;}} // namespace TNT#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -