📄 bpann.cpp
字号:
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
///////////////////////////以下为定义各个所用变量
int m_InputNums = 4; //输入层节点数
int m_OutputNums = 4; //输出层节点数
int m_HideNums = 10; //隐层节点数
int m_Maxcount = 100; //最大迭代次数
float m_Precision = 0.001; //设置精度
float m_Moon = 1.1; //加快走出平坦区
float Outdao[4]; //输出层偏导
float Yidao[10]; //隐层偏导
float Erro[4] = {0.0}; //误差存储
double Erroc[300];
double Y1[10]; //隐层输出
double Y2[4]; //输出层输出
float bc = 0.88; //步长通常取值在0.1-3之间
float at = 0.90; //惯性项系数 影响收敛速度
float Wp[4][8]; //输入层到隐层的权值
float Vp[8][4]; //隐层到输出层的权值
float Input[3][4] = {
0.1323 ,0.323 ,-0.132 ,-0.1342,
0.321 ,0.2434 ,0.456 ,-0.5342,
-0.6546,-0.3242,0.3255 ,0.2313
}; //训练集样本 即输入
float Output[3][4] = {
0.5435 ,0.422 ,-0.642,-0.3425,
0.1 ,0.562 ,0.5675,-0.3452,
-0.6464,-0.756,0.11 ,0.2312
}; //预期输出值
///////////////////////////以下为函数声明
void InitNet(void); //初始化网络
void FCalcul(float*Feature); //前向计算网络隐含层和输出层各神经元的输出
void ErroCalcul(); //计算误差
void BCalcul(); //后向计算修正权值
////////////////////////////
void InitNet(void)
{
int i,j;
int flag;
int test = 0;
srand( (unsigned)time( NULL ) );
//给输入层到隐层权值赋值为-0.1~0.1
printf("输入层到隐层权值初始值为\n");
for(i=0;i<m_InputNums;i++)
{
for(j=0;j<m_HideNums;j++)
{
Wp[i][j] = float(rand()%100); //产生0~100
Wp[i][j] = Wp[i][j]/1000; //产生0~0.1
flag = rand()%2;
if(flag == 0)
{
Wp[i][j] = -Wp[i][j];
test ++;
}
printf("%6f",Wp[i][j]);
}
printf("\n");
}
test = 0;
//给隐层到输出层权值赋值为-0.1~0.1
printf("隐层到输出层权值初始值为\n");
for(i=0;i<m_HideNums;i++)
{
for(j=0;j<m_OutputNums;j++)
{
Vp[i][j] = float(rand()%100); //产生0~100
Vp[i][j] = Vp[i][j]/1000; //产生0~0.1
flag = rand()%2;
if(flag == 0)
{
Vp[i][j] = -Vp[i][j];
test ++;
}
printf("%6f",Vp[i][j]);
}
printf("\n");
}
printf("\n");
}
void FCalcul(float* Feature)
{
int i,j;
float net;
for(j = 0; j < m_HideNums; j++)
{
net = 0.0;
for(i = 0; i < m_InputNums; i++)
{
net += Wp[i][j]*Feature[i]; //输入层到隐层各个单元的加权和
}
Y1[j] = 1.0/(1.0+exp(-net)); //计算隐层个单元输出
}
for(j = 0; j < m_OutputNums; j++)
{
net = 0.0;
for(i = 0; i < m_HideNums; i++)
{
net += Vp[i][j]*Y1[i]; //隐层到输出层的加权和∑X(i)V(i)
}
Y2[j] = 1.0/(1.0+exp(-net)); //计算各单元输出
}
}
void ErroCalcul(float* Feature,int t)
{
float ErroTemp = 0.0;
int i,j;
for(i = 0;i < m_OutputNums;i++)
{
ErroTemp+= (Feature[i]-Y2[i])*(Feature[i]-Y2[i]);
ErroTemp = 0.5*ErroTemp;
Erro[t] = ErroTemp;
}
for(j = 0;j < m_OutputNums;j++)
{
Outdao[j] = (Feature[j]-Y2[j])*Y2[j]*(1-Y2[j]); //输出层误差偏导
}
for(j = 0;j < m_HideNums;j++)
{
float tmp = 0.0;
for(i = 0;i < m_OutputNums;i++)
{
tmp = tmp+Outdao[i]*Vp[j][i]; //为了求隐层偏导计算的求和
}
Yidao[j] = tmp*Y1[j]*(1-Y1[j]); //隐层偏导
}
}
void BCalcul()
{
float m_Vdelfo[10][4] = {0.0},m_Vdel[10][4] = {0.0}; //隐层到输入层权值调整矩阵
float m_Wdelfo[4][10] = {0.0},m_Wdel[4][10] = {0.0}; //输入层到隐层权值调整矩阵
int i,j;
for(i = 0;i < m_HideNums;i++) //调整隐层到输入层的权值
for(j = 0;j < m_OutputNums;j++)
{
m_Vdelfo[i][j] = bc*Outdao[j]*Y2[j];
Vp[i][j] = Vp[i][j]+m_Vdelfo[i][j]+at*m_Vdel[i][j];
m_Vdel[i][j] = m_Vdelfo[i][j];
}
for(i = 0;i < m_InputNums;i++) //调整输入层到隐层的权值
for(j = 0;j < m_HideNums;j++)
{
m_Wdelfo[i][j] = bc*Yidao[j]*Y1[j];
Wp[i][j] = Wp[i][j]+m_Wdelfo[i][j]+at*m_Wdel[i][j];
m_Wdel[i][j] = m_Wdelfo[i][j];
}
}
void main(int argc, char *argv[])
{
int m_Sampnum,m_count; //学习样本和学习次数
InitNet();
m_count = 1;
while(m_count<=m_Maxcount)
{
m_Sampnum = 1;
while(m_Sampnum <= 3)
{
FCalcul(Input[m_Sampnum-1]);
ErroCalcul(Output[m_Sampnum-1],m_Sampnum-1);
BCalcul();
m_Sampnum++;
}
//调整使快速走出平坦区
double temp = 0.0;
for(int i = 0;i < m_Sampnum-1;i++)
{
temp = temp+Erro[i]*Erro[i];
}
Erroc[m_count] =sqrt(temp/3);
if(m_count>=2&&Erroc[m_count]-Erroc[m_count+1]<=0.0001)
{
for(int t = 0;t < m_OutputNums;t++)
{
float net = 0.0;
for(int j = 0; j < m_OutputNums; j++)
{
for(i = 0; i < m_HideNums; i++)
{
net += Vp[i][j]*Y1[i]; //输入层到隐层的加权和∑X(i)V(i)
}
}
Y2[t] = 1/(1+exp(-net)/m_Moon);
printf("%6f ",Y2[t]);
}
}
if(Erroc[m_count] <= m_Precision)
break;
m_count++;
Erroc[m_count+1] = Erroc[m_count];
}
///////////////////////以下为显示结果
printf("学习次数为%d\n",m_count-1);
printf("学习样本如下\n");
for(int t = 0;t < 3;t++)
{
for(int p = 0;p < 4;p++)
{
printf(" %6f ",Input[t][p]);
}
printf("\n");
}
printf("预期输出值如下\n");
for(t = 0;t < 3;t++)
{
for(int p = 0;p < 4;p++)
{
printf(" %6f ",Output[t][p]);
}
printf("\n");
}
printf("网络输出结果如下\n ");
for(int p = 0;p < 4;p++)
{
printf("%8f ",Y2[p]);
}
printf("\n");
printf("误差为%8f\n ",Erroc[m_count]);
int i;
scanf("%d",&i);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -