⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 crsa.cpp

📁 RSA数字签名 RSA算法的加密解密 可视化MFC界面
💻 CPP
字号:
//class vlong_value;

#include "stdafx.h"
#include "CRSA.h"

/*
class flex_unit // Provides storage allocation and index checking
{
  unsigned * a; // array of units
  unsigned z; // units allocated
public:
  unsigned n; // used units (read-only)
  flex_unit();
  ~flex_unit();
  void clear(); // set n to zero
  unsigned get( unsigned i ) const;     // get ith unsigned
  void set( unsigned i, unsigned x );   // set ith unsigned
  void reserve( unsigned x );           // storage hint

  // Time critical routine
  void fast_mul( flex_unit &x, flex_unit &y, unsigned n );
};

class vlong_value : public flex_unit
{
  public:
  unsigned share; // share count, used by vlong to delay physical copying
  int is_zero() const;
  int test( unsigned i ) const;
  unsigned bits() const;
  int cf( vlong_value& x ) const;
  void shl();
  void shr();
  void shr( unsigned n );
  void add( vlong_value& x );
  void subtract( vlong_value& x );
  void init( unsigned x );
  void copy( vlong_value& x );
  operator unsigned(); // Unsafe conversion to unsigned
  vlong_value();
  void mul( vlong_value& x, vlong_value& y );
  void divide( vlong_value& x, vlong_value& y, vlong_value& rem );
};
*/

unsigned flex_unit::get( unsigned i ) const
{
  if ( i >= n ) return 0;
  return a[i];
}

void flex_unit::clear()
{
   n = 0;
}

flex_unit::flex_unit()
{
  z = 0;
  a = 0;
  n = 0;
}

flex_unit::~flex_unit()
{
  unsigned i=z;
  while (i) { i-=1; a[i] = 0; } // burn
  delete [] a;
}

void flex_unit::reserve( unsigned x )
{
  if (x > z)
  {
    unsigned * na = new unsigned[x];
    for (unsigned i=0;i<n;i+=1) na[i] = a[i];
    delete [] a;
    a = na;
    z = x;
  }
}

void flex_unit::set( unsigned i, unsigned x )
{
  if ( i < n )
  {
    a[i] = x;
    if (x==0) while (n && a[n-1]==0) n-=1; // normalise
  }
  else if ( x )
  {
    reserve(i+1);
    for (unsigned j=n;j<i;j+=1) a[j] = 0;
    a[i] = x;
    n = i+1;
  }
}

// Macros for doing double precision multiply
#define BPU ( 8*sizeof(unsigned) )       // Number of bits in an unsigned
#define lo(x) ( (x) & ((1<<(BPU/2))-1) ) // lower half of unsigned
#define hi(x) ( (x) >> (BPU/2) )         // upper half
#define lh(x) ( (x) << (BPU/2) )         // make upper half

void flex_unit::fast_mul( flex_unit &x, flex_unit &y, unsigned keep )
{
  // *this = (x*y) % (2**keep)
  unsigned i,limit = (keep+BPU-1)/BPU; // size of result in words
  reserve(limit); for (i=0; i<limit; i+=1) a[i] = 0;
  unsigned min = x.n; if (min>limit) min = limit;
  for (i=0; i<min; i+=1)
  {
    unsigned m = x.a[i];
    unsigned c = 0; // carry
    unsigned min = i+y.n; if (min>limit) min = limit;
    for ( unsigned j=i; j<min; j+=1 )
    {
      // This is the critical loop
      // Machine dependent code could help here
      // c:a[j] = a[j] + c + m*y.a[j-i];
      unsigned w, v = a[j], p = y.a[j-i];
      v += c; c = ( v < c );
      w = lo(p)*lo(m); v += w; c += ( v < w );
      w = lo(p)*hi(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
      w = hi(p)*lo(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
      c += hi(p) * hi(m);
      a[j] = v;
    }
    while ( c && j<limit )
    {
      a[j] += c;
      c = a[j] < c;
      j += 1;
    }
  }

  // eliminate unwanted bits
  keep %= BPU; if (keep) a[limit-1] &= (1<<keep)-1;

   // calculate n
  while (limit && a[limit-1]==0) limit-=1;
  n = limit;
};

vlong_value::operator unsigned()
{
  return get(0);
}

int vlong_value::is_zero() const
{
  return n==0;
}

int vlong_value::test( unsigned i ) const
{ return ( get(i/BPU) & (1<<(i%BPU)) ) != 0; }

unsigned vlong_value::bits() const
{
  unsigned x = n*BPU;
  while (x && test(x-1)==0) x -= 1;
  return x;
}

int vlong_value::cf( vlong_value& x ) const
{
  if ( n > x.n ) return +1;
  if ( n < x.n ) return -1;
  unsigned i = n;
  while (i)
  {
    i -= 1;
    if ( get(i) > x.get(i) ) return +1;
    if ( get(i) < x.get(i) ) return -1;
  }
  return 0;
}

void vlong_value::shl()
{
  unsigned carry = 0;
  unsigned N = n; // necessary, since n can change
  for (unsigned i=0;i<=N;i+=1)
  {
    unsigned u = get(i);
    set(i,(u<<1)+carry);
    carry = u>>(BPU-1);
  }
}

void vlong_value::shr()
{
  unsigned carry = 0;
  unsigned i=n;
  while (i)
  {
    i -= 1;
    unsigned u = get(i);
    set(i,(u>>1)+carry);
    carry = u<<(BPU-1);
  }
}

void vlong_value::shr( unsigned x )
{
  unsigned delta = x/BPU; x %= BPU;
  for (unsigned i=0;i<n;i+=1)
  {
    unsigned u = get(i+delta);
    if (x)
    {
      u >>= x;
      u += get(i+delta+1) << (BPU-x);
    }
    set(i,u);
  }
}

void vlong_value::add( vlong_value & x )
{
  unsigned carry = 0;
  unsigned max = n; if (max<x.n) max = x.n;
  reserve(max);
  for (unsigned i=0;i<max+1;i+=1)
  {
    unsigned u = get(i);
    u = u + carry; carry = ( u < carry );
    unsigned ux = x.get(i);
    u = u + ux; carry += ( u < ux );
    set(i,u);
  }
}

void vlong_value::subtract( vlong_value & x )
{
  unsigned carry = 0;
  unsigned N = n;
  for (unsigned i=0;i<N;i+=1)
  {
    unsigned ux = x.get(i);
    ux += carry;
    if ( ux >= carry )
    {
      unsigned u = get(i);
      unsigned nu = u - ux;
      carry = nu > u;
      set(i,nu);
    }
  }
}

void vlong_value::init( unsigned x )
{
  clear();
  set(0,x);
}

void vlong_value::copy( vlong_value& x )
{
  clear();
  unsigned i=x.n;
  while (i) { i -= 1; set( i, x.get(i) ); }
}

vlong_value::vlong_value()
{
  share = 0;
}

void vlong_value::mul( vlong_value& x, vlong_value& y )
{
  fast_mul( x, y, x.bits()+y.bits() );
}

void vlong_value::divide( vlong_value& x, vlong_value& y, vlong_value& rem )
{
  init(0);
  rem.copy(x);
  vlong_value m,s;
  m.copy(y);
  s.init(1);
  while ( rem.cf(m) > 0 )
  {
    m.shl();
    s.shl();
  }
  while ( rem.cf(y) >= 0 )
  {
    while ( rem.cf(m) < 0 )
    {
      m.shr();
      s.shr();
    }
    rem.subtract( m );
    add( s );
  }
}

// Implementation of vlong

void vlong::docopy()
{
  if ( value->share )
  {
    value->share -= 1;
    vlong_value * nv = new vlong_value;
    nv->copy(*value);
    value = nv;
  }
}

int vlong::cf( const vlong x ) const
{
  int neg = negative && !value->is_zero();
  if ( neg == (x.negative && !x.value->is_zero()) )
    return value->cf( *x.value );
  else if ( neg ) return -1;
  else return +1;
}

vlong::vlong (unsigned x)
{
  value = new vlong_value;
  negative = 0;
  value->init(x);
}

vlong::vlong ( const vlong& x ) // copy constructor
{
  negative = x.negative;
  value = x.value;
  value->share += 1;
}

vlong& vlong::operator =(const vlong& x)
{
  if ( value->share ) value->share -=1; else delete value;
  value = x.value;
  value->share += 1;
  negative = x.negative;
  return *this;
}

vlong::~vlong()
{
  if ( value->share ) value->share -=1; else delete value;
}

vlong::operator unsigned () // conversion to unsigned
{
  return *value;
}

vlong& vlong::operator +=(const vlong& x)
{
  if ( negative == x.negative )
  {
    docopy();
    value->add( *x.value );
  }
  else if ( value->cf( *x.value ) >= 0 )
  {
    docopy();
    value->subtract( *x.value );
  }
  else
  {
    vlong tmp = *this;
    *this = x;
    *this += tmp;
  }
  return *this;
}

vlong& vlong::operator -=(const vlong& x)
{
  if ( negative != x.negative )
  {
    docopy();
    value->add( *x.value );
  }
  else if ( value->cf( *x.value ) >= 0 )
  {
    docopy();
    value->subtract( *x.value );
  }
  else
  {
    vlong tmp = *this;
    *this = x;
    *this -= tmp;
    negative = 1 - negative;
  }
  return *this;
}

vlong operator +( const vlong& x, const vlong& y )
{
  vlong result = x;
  result += y;
  return result;
}

vlong operator -( const vlong& x, const vlong& y )
{
  vlong result = x;
  result -= y;
  return result;
}

vlong operator *( const vlong& x, const vlong& y )
{
  vlong result;
  result.value->mul( *x.value, *y.value );
  result.negative = x.negative ^ y.negative;
  return result;
}

vlong operator /( const vlong& x, const vlong& y )
{
  vlong result;
  vlong_value rem;
  result.value->divide( *x.value, *y.value, rem );
  result.negative = x.negative ^ y.negative;
  return result;
}

vlong operator %( const vlong& x, const vlong& y )
{
  vlong result;
  vlong_value divide;
  divide.divide( *x.value, *y.value, *result.value );
  result.negative = x.negative; // not sure about this?
  return result;
}

vlong gcd( const vlong &X, const vlong &Y )
{
  vlong x=X, y=Y;
  while (1)
  {
    if(y==(vlong)0)
		return x;
    x = x % y;
    if(x==(vlong)0 )
		return y;
    y = y % x;
  }
}

vlong modinv( const vlong &a, const vlong &m ) // modular inverse
// returns i in range 1..m-1 such that i*a = 1 mod m
// a must be in range 1..m-1
{
  vlong j=1,i=0,b=m,c=a,x,y;
  while ( c != (vlong)0 )
  {
    x = b / c;
    y = b - x*c;
    b = c;
    c = y;
    y = j;
    j = i - j*x;
    i = y;
  }
  if ( i < (vlong)0 )
    i += m;
  return i;
}

class monty // class for montgomery modular exponentiation
{
  vlong R,R1,m,n1;
  vlong T,k;   // work registers
  unsigned N;  // bits for R
  void mul( vlong &x, const vlong &y );
public:
  vlong exp( const vlong &x, const vlong &e );
  monty( const vlong &M );
};

monty::monty( const vlong &M )
{
  m = M;
  N = 0; R = 1; 
  while ( R < M ) 
	{ R += R; N += 1; }
  R1 = modinv( R-m, m );
  n1 = R - modinv( m, R );
}

void monty::mul( vlong &x, const vlong &y )
{
  // T = x*y;
  T.value->fast_mul( *x.value, *y.value, N*2 );

  // k = ( T * n1 ) % R;
  k.value->fast_mul( *T.value, *n1.value, N );

  // x = ( T + k*m ) / R;
  x.value->fast_mul( *k.value, *m.value, N*2 );
  x += T;
  x.value->shr( N );

  if (x>=m) x -= m;
}

vlong monty::exp( const vlong &x, const vlong &e )
{
  vlong result = R-m, t = ( x * R ) % m;
  unsigned bits = e.value->bits();
  unsigned i = 0;
  while (1)
  {
    if ( e.value->test(i) )
      mul( result, t);
    i += 1;
    if ( i == bits ) break;
    mul( t, t );
  }
  return ( result * R1 ) % m;
}

vlong modexp( const vlong & x, const vlong & e, const vlong & m )
{
  monty me(m);
  return me.exp( x,e );
}

class prime_factory
{
  unsigned np;
  unsigned *pl;
  public:
  prime_factory();
  ~prime_factory();
  vlong find_prime( vlong & start );
};

// prime factory implementation

static int is_probable_prime( const vlong &p )
{
  // Test based on Fermats theorem a**(p-1) = 1 mod p for prime p
  // For 1000 bit numbers this can take quite a while
  const rep = 4;
  const unsigned any[rep] = { 2,3,5,7 };
  for ( unsigned i=0; i<rep; i+=1 )
    if ( modexp( any[i], p-1, p ) != (vlong)1 )
      return 0;
  return 1;
}

prime_factory::prime_factory()
{
  np = 0;
  unsigned NP = 200;
  pl = new unsigned[NP];

  // Initialise pl
  unsigned SS = 8*NP; // Rough estimate to fill pl
  char * b = new char[SS+1]; // one extra to stop search
  for (unsigned i=0;i<=SS;i+=1) b[i] = 1;
  unsigned p = 2;
  while (1)
  {
    // skip composites
    while ( b[p] == 0 ) p += 1;
    if ( p == SS ) break;
    pl[np] = p;
    np += 1;
    if ( np == NP ) break;
    // cross off multiples
    unsigned c = p*2;
    while ( c < SS )
    {
      b[c] = 0;
      c += p;
    }
    p += 1;
  }
  delete [] b;
}

prime_factory::~prime_factory()
{
  delete [] pl;
}

vlong prime_factory::find_prime( vlong & start )
{
  unsigned SS = 1000; // should be enough unless we are unlucky
  char * b = new char[SS]; // bitset of candidate primes
  unsigned tested = 0;
  while (1)
  {
    unsigned i;
    for (i=0;i<SS;i+=1)
      b[i] = 1;
    for (i=0;i<np;i+=1)
    {
      unsigned p = pl[i];
      unsigned r = start % (vlong)p; // not as fast as it should be - could do with special routine
      if (r) r = p - r;
      // cross off multiples of p
      while ( r < SS )
      {
        b[r] = 0;
        r += p;
      }
    }
    // now test candidates
    for (i=0;i<SS;i+=1)
    {
      if ( b[i] )
      {
        tested += 1;
        if ( is_probable_prime(start) )
          return start;
      }
      start += 1;
    }
  }
  delete [] b;
}

static vlong from_str( const char * s )
{
  vlong x = 0;
  while (*s)
  {
    x = x * (vlong)256 + (vlong)((unsigned char)*s);
    s += 1;
  }
  return x;
}

void private_key::create( const char * r1, const char * r2,const char *r3)
{
  // Choose primes
  {
    prime_factory pf;
    p = pf.find_prime( from_str(r1) );
    q = pf.find_prime( from_str(r2) );
	e = pf.find_prime( from_str(r3) );
    if ( p > q ) { vlong tmp = p; p = q; q = tmp; }
  }
  // Calculate public key
  {
    m = p*q;
//    e = 50001; // must be odd since p-1 and q-1 are even
    while ( gcd(p-(vlong)1,e) != (vlong)1 || gcd(q-(vlong)1,e) != (vlong)1 ) e += 2;
	md=modinv( e, (p-(vlong)1)*(q-(vlong)1) );
  }
}

vlong public_key::encrypt( const vlong& plain )
{
  return modexp( plain, e, m );
}

vlong private_key::decrypt( const vlong& cipher )
{
  // Calculate values for performing decryption
  // These could be cached, but the calculation is quite fast
  vlong d = modinv( e, (p-(vlong)1)*(q-(vlong)1) );
  vlong u = modinv( p, q );
  vlong dp = d % (p-(vlong)1);
  vlong dq = d % (q-(vlong)1);

  // Apply chinese remainder theorem
  vlong a = modexp( cipher % p, dp, p );
  vlong b = modexp( cipher % q, dq, q );
  if ( b < a ) b += q;
  return a + p * ( ((b-a)*u) % q );
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -