📄 crsa.cpp
字号:
//class vlong_value;
#include "stdafx.h"
#include "CRSA.h"
/*
class flex_unit // Provides storage allocation and index checking
{
unsigned * a; // array of units
unsigned z; // units allocated
public:
unsigned n; // used units (read-only)
flex_unit();
~flex_unit();
void clear(); // set n to zero
unsigned get( unsigned i ) const; // get ith unsigned
void set( unsigned i, unsigned x ); // set ith unsigned
void reserve( unsigned x ); // storage hint
// Time critical routine
void fast_mul( flex_unit &x, flex_unit &y, unsigned n );
};
class vlong_value : public flex_unit
{
public:
unsigned share; // share count, used by vlong to delay physical copying
int is_zero() const;
int test( unsigned i ) const;
unsigned bits() const;
int cf( vlong_value& x ) const;
void shl();
void shr();
void shr( unsigned n );
void add( vlong_value& x );
void subtract( vlong_value& x );
void init( unsigned x );
void copy( vlong_value& x );
operator unsigned(); // Unsafe conversion to unsigned
vlong_value();
void mul( vlong_value& x, vlong_value& y );
void divide( vlong_value& x, vlong_value& y, vlong_value& rem );
};
*/
unsigned flex_unit::get( unsigned i ) const
{
if ( i >= n ) return 0;
return a[i];
}
void flex_unit::clear()
{
n = 0;
}
flex_unit::flex_unit()
{
z = 0;
a = 0;
n = 0;
}
flex_unit::~flex_unit()
{
unsigned i=z;
while (i) { i-=1; a[i] = 0; } // burn
delete [] a;
}
void flex_unit::reserve( unsigned x )
{
if (x > z)
{
unsigned * na = new unsigned[x];
for (unsigned i=0;i<n;i+=1) na[i] = a[i];
delete [] a;
a = na;
z = x;
}
}
void flex_unit::set( unsigned i, unsigned x )
{
if ( i < n )
{
a[i] = x;
if (x==0) while (n && a[n-1]==0) n-=1; // normalise
}
else if ( x )
{
reserve(i+1);
for (unsigned j=n;j<i;j+=1) a[j] = 0;
a[i] = x;
n = i+1;
}
}
// Macros for doing double precision multiply
#define BPU ( 8*sizeof(unsigned) ) // Number of bits in an unsigned
#define lo(x) ( (x) & ((1<<(BPU/2))-1) ) // lower half of unsigned
#define hi(x) ( (x) >> (BPU/2) ) // upper half
#define lh(x) ( (x) << (BPU/2) ) // make upper half
void flex_unit::fast_mul( flex_unit &x, flex_unit &y, unsigned keep )
{
// *this = (x*y) % (2**keep)
unsigned i,limit = (keep+BPU-1)/BPU; // size of result in words
reserve(limit); for (i=0; i<limit; i+=1) a[i] = 0;
unsigned min = x.n; if (min>limit) min = limit;
for (i=0; i<min; i+=1)
{
unsigned m = x.a[i];
unsigned c = 0; // carry
unsigned min = i+y.n; if (min>limit) min = limit;
for ( unsigned j=i; j<min; j+=1 )
{
// This is the critical loop
// Machine dependent code could help here
// c:a[j] = a[j] + c + m*y.a[j-i];
unsigned w, v = a[j], p = y.a[j-i];
v += c; c = ( v < c );
w = lo(p)*lo(m); v += w; c += ( v < w );
w = lo(p)*hi(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
w = hi(p)*lo(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
c += hi(p) * hi(m);
a[j] = v;
}
while ( c && j<limit )
{
a[j] += c;
c = a[j] < c;
j += 1;
}
}
// eliminate unwanted bits
keep %= BPU; if (keep) a[limit-1] &= (1<<keep)-1;
// calculate n
while (limit && a[limit-1]==0) limit-=1;
n = limit;
};
vlong_value::operator unsigned()
{
return get(0);
}
int vlong_value::is_zero() const
{
return n==0;
}
int vlong_value::test( unsigned i ) const
{ return ( get(i/BPU) & (1<<(i%BPU)) ) != 0; }
unsigned vlong_value::bits() const
{
unsigned x = n*BPU;
while (x && test(x-1)==0) x -= 1;
return x;
}
int vlong_value::cf( vlong_value& x ) const
{
if ( n > x.n ) return +1;
if ( n < x.n ) return -1;
unsigned i = n;
while (i)
{
i -= 1;
if ( get(i) > x.get(i) ) return +1;
if ( get(i) < x.get(i) ) return -1;
}
return 0;
}
void vlong_value::shl()
{
unsigned carry = 0;
unsigned N = n; // necessary, since n can change
for (unsigned i=0;i<=N;i+=1)
{
unsigned u = get(i);
set(i,(u<<1)+carry);
carry = u>>(BPU-1);
}
}
void vlong_value::shr()
{
unsigned carry = 0;
unsigned i=n;
while (i)
{
i -= 1;
unsigned u = get(i);
set(i,(u>>1)+carry);
carry = u<<(BPU-1);
}
}
void vlong_value::shr( unsigned x )
{
unsigned delta = x/BPU; x %= BPU;
for (unsigned i=0;i<n;i+=1)
{
unsigned u = get(i+delta);
if (x)
{
u >>= x;
u += get(i+delta+1) << (BPU-x);
}
set(i,u);
}
}
void vlong_value::add( vlong_value & x )
{
unsigned carry = 0;
unsigned max = n; if (max<x.n) max = x.n;
reserve(max);
for (unsigned i=0;i<max+1;i+=1)
{
unsigned u = get(i);
u = u + carry; carry = ( u < carry );
unsigned ux = x.get(i);
u = u + ux; carry += ( u < ux );
set(i,u);
}
}
void vlong_value::subtract( vlong_value & x )
{
unsigned carry = 0;
unsigned N = n;
for (unsigned i=0;i<N;i+=1)
{
unsigned ux = x.get(i);
ux += carry;
if ( ux >= carry )
{
unsigned u = get(i);
unsigned nu = u - ux;
carry = nu > u;
set(i,nu);
}
}
}
void vlong_value::init( unsigned x )
{
clear();
set(0,x);
}
void vlong_value::copy( vlong_value& x )
{
clear();
unsigned i=x.n;
while (i) { i -= 1; set( i, x.get(i) ); }
}
vlong_value::vlong_value()
{
share = 0;
}
void vlong_value::mul( vlong_value& x, vlong_value& y )
{
fast_mul( x, y, x.bits()+y.bits() );
}
void vlong_value::divide( vlong_value& x, vlong_value& y, vlong_value& rem )
{
init(0);
rem.copy(x);
vlong_value m,s;
m.copy(y);
s.init(1);
while ( rem.cf(m) > 0 )
{
m.shl();
s.shl();
}
while ( rem.cf(y) >= 0 )
{
while ( rem.cf(m) < 0 )
{
m.shr();
s.shr();
}
rem.subtract( m );
add( s );
}
}
// Implementation of vlong
void vlong::docopy()
{
if ( value->share )
{
value->share -= 1;
vlong_value * nv = new vlong_value;
nv->copy(*value);
value = nv;
}
}
int vlong::cf( const vlong x ) const
{
int neg = negative && !value->is_zero();
if ( neg == (x.negative && !x.value->is_zero()) )
return value->cf( *x.value );
else if ( neg ) return -1;
else return +1;
}
vlong::vlong (unsigned x)
{
value = new vlong_value;
negative = 0;
value->init(x);
}
vlong::vlong ( const vlong& x ) // copy constructor
{
negative = x.negative;
value = x.value;
value->share += 1;
}
vlong& vlong::operator =(const vlong& x)
{
if ( value->share ) value->share -=1; else delete value;
value = x.value;
value->share += 1;
negative = x.negative;
return *this;
}
vlong::~vlong()
{
if ( value->share ) value->share -=1; else delete value;
}
vlong::operator unsigned () // conversion to unsigned
{
return *value;
}
vlong& vlong::operator +=(const vlong& x)
{
if ( negative == x.negative )
{
docopy();
value->add( *x.value );
}
else if ( value->cf( *x.value ) >= 0 )
{
docopy();
value->subtract( *x.value );
}
else
{
vlong tmp = *this;
*this = x;
*this += tmp;
}
return *this;
}
vlong& vlong::operator -=(const vlong& x)
{
if ( negative != x.negative )
{
docopy();
value->add( *x.value );
}
else if ( value->cf( *x.value ) >= 0 )
{
docopy();
value->subtract( *x.value );
}
else
{
vlong tmp = *this;
*this = x;
*this -= tmp;
negative = 1 - negative;
}
return *this;
}
vlong operator +( const vlong& x, const vlong& y )
{
vlong result = x;
result += y;
return result;
}
vlong operator -( const vlong& x, const vlong& y )
{
vlong result = x;
result -= y;
return result;
}
vlong operator *( const vlong& x, const vlong& y )
{
vlong result;
result.value->mul( *x.value, *y.value );
result.negative = x.negative ^ y.negative;
return result;
}
vlong operator /( const vlong& x, const vlong& y )
{
vlong result;
vlong_value rem;
result.value->divide( *x.value, *y.value, rem );
result.negative = x.negative ^ y.negative;
return result;
}
vlong operator %( const vlong& x, const vlong& y )
{
vlong result;
vlong_value divide;
divide.divide( *x.value, *y.value, *result.value );
result.negative = x.negative; // not sure about this?
return result;
}
vlong gcd( const vlong &X, const vlong &Y )
{
vlong x=X, y=Y;
while (1)
{
if(y==(vlong)0)
return x;
x = x % y;
if(x==(vlong)0 )
return y;
y = y % x;
}
}
vlong modinv( const vlong &a, const vlong &m ) // modular inverse
// returns i in range 1..m-1 such that i*a = 1 mod m
// a must be in range 1..m-1
{
vlong j=1,i=0,b=m,c=a,x,y;
while ( c != (vlong)0 )
{
x = b / c;
y = b - x*c;
b = c;
c = y;
y = j;
j = i - j*x;
i = y;
}
if ( i < (vlong)0 )
i += m;
return i;
}
class monty // class for montgomery modular exponentiation
{
vlong R,R1,m,n1;
vlong T,k; // work registers
unsigned N; // bits for R
void mul( vlong &x, const vlong &y );
public:
vlong exp( const vlong &x, const vlong &e );
monty( const vlong &M );
};
monty::monty( const vlong &M )
{
m = M;
N = 0; R = 1;
while ( R < M )
{ R += R; N += 1; }
R1 = modinv( R-m, m );
n1 = R - modinv( m, R );
}
void monty::mul( vlong &x, const vlong &y )
{
// T = x*y;
T.value->fast_mul( *x.value, *y.value, N*2 );
// k = ( T * n1 ) % R;
k.value->fast_mul( *T.value, *n1.value, N );
// x = ( T + k*m ) / R;
x.value->fast_mul( *k.value, *m.value, N*2 );
x += T;
x.value->shr( N );
if (x>=m) x -= m;
}
vlong monty::exp( const vlong &x, const vlong &e )
{
vlong result = R-m, t = ( x * R ) % m;
unsigned bits = e.value->bits();
unsigned i = 0;
while (1)
{
if ( e.value->test(i) )
mul( result, t);
i += 1;
if ( i == bits ) break;
mul( t, t );
}
return ( result * R1 ) % m;
}
vlong modexp( const vlong & x, const vlong & e, const vlong & m )
{
monty me(m);
return me.exp( x,e );
}
class prime_factory
{
unsigned np;
unsigned *pl;
public:
prime_factory();
~prime_factory();
vlong find_prime( vlong & start );
};
// prime factory implementation
static int is_probable_prime( const vlong &p )
{
// Test based on Fermats theorem a**(p-1) = 1 mod p for prime p
// For 1000 bit numbers this can take quite a while
const rep = 4;
const unsigned any[rep] = { 2,3,5,7 };
for ( unsigned i=0; i<rep; i+=1 )
if ( modexp( any[i], p-1, p ) != (vlong)1 )
return 0;
return 1;
}
prime_factory::prime_factory()
{
np = 0;
unsigned NP = 200;
pl = new unsigned[NP];
// Initialise pl
unsigned SS = 8*NP; // Rough estimate to fill pl
char * b = new char[SS+1]; // one extra to stop search
for (unsigned i=0;i<=SS;i+=1) b[i] = 1;
unsigned p = 2;
while (1)
{
// skip composites
while ( b[p] == 0 ) p += 1;
if ( p == SS ) break;
pl[np] = p;
np += 1;
if ( np == NP ) break;
// cross off multiples
unsigned c = p*2;
while ( c < SS )
{
b[c] = 0;
c += p;
}
p += 1;
}
delete [] b;
}
prime_factory::~prime_factory()
{
delete [] pl;
}
vlong prime_factory::find_prime( vlong & start )
{
unsigned SS = 1000; // should be enough unless we are unlucky
char * b = new char[SS]; // bitset of candidate primes
unsigned tested = 0;
while (1)
{
unsigned i;
for (i=0;i<SS;i+=1)
b[i] = 1;
for (i=0;i<np;i+=1)
{
unsigned p = pl[i];
unsigned r = start % (vlong)p; // not as fast as it should be - could do with special routine
if (r) r = p - r;
// cross off multiples of p
while ( r < SS )
{
b[r] = 0;
r += p;
}
}
// now test candidates
for (i=0;i<SS;i+=1)
{
if ( b[i] )
{
tested += 1;
if ( is_probable_prime(start) )
return start;
}
start += 1;
}
}
delete [] b;
}
static vlong from_str( const char * s )
{
vlong x = 0;
while (*s)
{
x = x * (vlong)256 + (vlong)((unsigned char)*s);
s += 1;
}
return x;
}
void private_key::create( const char * r1, const char * r2,const char *r3)
{
// Choose primes
{
prime_factory pf;
p = pf.find_prime( from_str(r1) );
q = pf.find_prime( from_str(r2) );
e = pf.find_prime( from_str(r3) );
if ( p > q ) { vlong tmp = p; p = q; q = tmp; }
}
// Calculate public key
{
m = p*q;
// e = 50001; // must be odd since p-1 and q-1 are even
while ( gcd(p-(vlong)1,e) != (vlong)1 || gcd(q-(vlong)1,e) != (vlong)1 ) e += 2;
md=modinv( e, (p-(vlong)1)*(q-(vlong)1) );
}
}
vlong public_key::encrypt( const vlong& plain )
{
return modexp( plain, e, m );
}
vlong private_key::decrypt( const vlong& cipher )
{
// Calculate values for performing decryption
// These could be cached, but the calculation is quite fast
vlong d = modinv( e, (p-(vlong)1)*(q-(vlong)1) );
vlong u = modinv( p, q );
vlong dp = d % (p-(vlong)1);
vlong dq = d % (q-(vlong)1);
// Apply chinese remainder theorem
vlong a = modexp( cipher % p, dp, p );
vlong b = modexp( cipher % q, dq, q );
if ( b < a ) b += q;
return a + p * ( ((b-a)*u) % q );
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -