⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r5rs-z-h-9.html

📁 scheme 标准(r5rs)。Scheme是MIT发布的基于Lambda运算的语言
💻 HTML
📖 第 1 页 / 共 5 页
字号:
quantity.  For any Scheme number, precisely one of these predicatesis true.<p><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_254"></a>=<i> <em>z</em><sub>1</sub> <em>z</em><sub>2</sub> <em>z</em><sub>3</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_256"></a>&lt;<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <em>x</em><sub>3</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_258"></a>&gt;<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <em>x</em><sub>3</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_260"></a>&lt;=<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <em>x</em><sub>3</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_262"></a>&gt;=<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <em>x</em><sub>3</sub> <tt>...</tt></i>)</tt>&nbsp;</div><p>These procedures return <tt>#t</tt> if their arguments are (respectively):equal, monotonically increasing, monotonically decreasing,monotonically nondecreasing, or monotonically nonincreasing.<p>These predicates are required to be transitive.<p><blockquote><em>Note:&nbsp;&nbsp;</em>The traditional implementations of these predicates in Lisp-likelanguages are not transitive.</blockquote><p><blockquote><em>Note:&nbsp;&nbsp;</em>While it is not an error to compare inexact numbers using thesepredicates, the results may be unreliable because a small inaccuracymay affect the result; this is especially true of <tt>=</tt> and <tt>zero?</tt>.When in doubt, consult a numerical analyst.</blockquote><p><p><p><p><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_264"></a>zero?<i> <em>z</em></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_266"></a>positive?<i> <em>x</em></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_268"></a>negative?<i> <em>x</em></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_270"></a>odd?<i> <em>n</em></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_272"></a>even?<i> <em>n</em></i>)</tt>&nbsp;</div><p>These numerical predicates test a number for a particular property,returning <tt>#t</tt> or <tt>#f</tt>.  See note above.<p><p><p><p><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_274"></a>max<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_276"></a>min<i> <em>x</em><sub>1</sub> <em>x</em><sub>2</sub> <tt>...</tt></i>)</tt>&nbsp;</div><p>These procedures return the maximum or minimum of their arguments.<p><tt><p>(max&nbsp;3&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;&nbsp;;&nbsp;exact<br>(max&nbsp;3.9&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;4.0&nbsp;&nbsp;;&nbsp;inexact<p></tt><p><blockquote><em>Note:&nbsp;&nbsp;</em>If any argument is inexact, then the result will also be inexact (unlessthe procedure can prove that the inaccuracy is not large enough to affect theresult, which is possible only in unusual implementations).  If <tt>min</tt> or<tt>max</tt> is used to compare numbers of mixed exactness, and the numericalvalue of the result cannot be represented as an inexact number without loss ofaccuracy, then the procedure may report a violation of an implementationrestriction.</blockquote><p><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_278"></a>+<i> <em>z</em><sub>1</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_280"></a>*<i> <em>z</em><sub>1</sub> <tt>...</tt></i>)</tt>&nbsp;</div><p>These procedures return the sum or product of their arguments.<tt><p>(+&nbsp;3&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;7<br>(+&nbsp;3)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;3<br>(+)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;0<br>(*&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;4<br>(*)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<p></tt> <p><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_282"></a>-<i> <em>z</em><sub>1</sub> <em>z</em><sub>2</sub></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(-<i> <em>z</em></i>)</tt>&nbsp;</div><div align=left><u>optional procedure:</u>&nbsp;&nbsp;<tt>(-<i> <em>z</em><sub>1</sub> <em>z</em><sub>2</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_284"></a>/<i> <em>z</em><sub>1</sub> <em>z</em><sub>2</sub></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(/<i> <em>z</em></i>)</tt>&nbsp;</div><div align=left><u>optional procedure:</u>&nbsp;&nbsp;<tt>(/<i> <em>z</em><sub>1</sub> <em>z</em><sub>2</sub> <tt>...</tt></i>)</tt>&nbsp;</div><p>With two or more arguments, these procedures return the difference orquotient of their arguments, associating to the left.  With one argument,however, they return the additive or multiplicative inverse of their argument.<tt><p>(-&nbsp;3&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br>(-&nbsp;3&nbsp;4&nbsp;5)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-6<br>(-&nbsp;3)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-3<br>(/&nbsp;3&nbsp;4&nbsp;5)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;3/20<br>(/&nbsp;3)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1/3<p></tt><p><p><p><p><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_286"></a>abs<i> x</i>)</tt>&nbsp;</div><p><tt>Abs</tt> returns the absolute value of its argument.  <tt><p>(abs&nbsp;-7)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;7<br><p></tt><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_288"></a>quotient<i> <em>n</em><sub>1</sub> <em>n</em><sub>2</sub></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_290"></a>remainder<i> <em>n</em><sub>1</sub> <em>n</em><sub>2</sub></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_292"></a>modulo<i> <em>n</em><sub>1</sub> <em>n</em><sub>2</sub></i>)</tt>&nbsp;</div><p>These procedures implement number-theoretic (integer)division.  <em>n</em><sub>2</sub> should be non-zero.  All three proceduresreturn integers.  If <em>n</em><sub>1</sub>/<em>n</em><sub>2</sub> is an integer:<tt><p>&nbsp;&nbsp;&nbsp;&nbsp;(quotient&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;<em>n</em><sub>1</sub>/<em>n</em><sub>2</sub><br>&nbsp;&nbsp;&nbsp;&nbsp;(remainder&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;0<br>&nbsp;&nbsp;&nbsp;&nbsp;(modulo&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;0<br><p></tt>If <em>n</em><sub>1</sub>/<em>n</em><sub>2</sub> is not an integer:<tt><p>&nbsp;&nbsp;&nbsp;&nbsp;(quotient&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;<em>n</em><sub><em>q</em></sub><br>&nbsp;&nbsp;&nbsp;&nbsp;(remainder&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;<em>n</em><sub><em>r</em></sub><br>&nbsp;&nbsp;&nbsp;&nbsp;(modulo&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;<em>n</em><sub><em>m</em></sub><br><p></tt>where <em>n</em><sub><em>q</em></sub> is <em>n</em><sub>1</sub>/<em>n</em><sub>2</sub> rounded towards zero,0 &lt; |<em>n</em><sub><em>r</em></sub>| &lt; |<em>n</em><sub>2</sub>|, 0 &lt; |<em>n</em><sub><em>m</em></sub>| &lt; |<em>n</em><sub>2</sub>|,<em>n</em><sub><em>r</em></sub> and <em>n</em><sub><em>m</em></sub> differ from <em>n</em><sub>1</sub> by a multiple of <em>n</em><sub>2</sub>,<em>n</em><sub><em>r</em></sub> has the same sign as <em>n</em><sub>1</sub>, and<em>n</em><sub><em>m</em></sub> has the same sign as <em>n</em><sub>2</sub>.<p>From this we can conclude that for integers <em>n</em><sub>1</sub> and <em>n</em><sub>2</sub> with<em>n</em><sub>2</sub> not equal to 0,<tt><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(=&nbsp;<em>n</em><sub>1</sub>&nbsp;(+&nbsp;(*&nbsp;<em>n</em><sub>2</sub>&nbsp;(quotient&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>))<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(remainder&nbsp;<em>n</em><sub>1</sub>&nbsp;<em>n</em><sub>2</sub>)))<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;<tt>#t</tt><p></tt>provided all numbers involved in that computation are exact.<p><tt><p>(modulo&nbsp;13&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<br>(remainder&nbsp;13&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<br><br>(modulo&nbsp;-13&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;3<br>(remainder&nbsp;-13&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br><br>(modulo&nbsp;13&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-3<br>(remainder&nbsp;13&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<br><br>(modulo&nbsp;-13&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br>(remainder&nbsp;-13&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br><br>(remainder&nbsp;-13&nbsp;-4.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1.0&nbsp;&nbsp;;&nbsp;inexact<p></tt><p><p><p><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_294"></a>gcd<i> <em>n</em><sub>1</sub> <tt>...</tt></i>)</tt>&nbsp;</div><div align=left><u>library procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_296"></a>lcm<i> <em>n</em><sub>1</sub> <tt>...</tt></i>)</tt>&nbsp;</div><p>These procedures return the greatest common divisor or least commonmultiple of their arguments.  The result is always non-negative.<tt><p>(gcd&nbsp;32&nbsp;-36)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;4<br>(gcd)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;0<br>(lcm&nbsp;32&nbsp;-36)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;288<br>(lcm&nbsp;32.0&nbsp;-36)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;288.0&nbsp;&nbsp;;&nbsp;inexact<br>(lcm)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<p></tt><p><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_298"></a>numerator<i> <em>q</em></i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_300"></a>denominator<i> <em>q</em></i>)</tt>&nbsp;</div><p>These procedures return the numerator or denominator of theirargument; the result is computed as if the argument was represented asa fraction in lowest terms.  The denominator is always positive.  Thedenominator of 0 is defined to be 1.<tt><p>(numerator&nbsp;(/&nbsp;6&nbsp;4))&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;3<br>(denominator&nbsp;(/&nbsp;6&nbsp;4))&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;2<br>(denominator<br>&nbsp;&nbsp;(exact-&gt;inexact&nbsp;(/&nbsp;6&nbsp;4)))&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;2.0<p></tt><p><p><p><p><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_302"></a>floor<i> x</i>)</tt>&nbsp;</div><div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="%_idx_304"></a>ceiling<i> x</i>)</tt>&nbsp;</div>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -