📄 efi.c
字号:
* Some descriptors have multiple bits set, so the order of * the tests is relevant. */ if (md->attribute & EFI_MEMORY_WB) { md->virt_addr = (u64) __va(md->phys_addr); } else if (md->attribute & EFI_MEMORY_UC) { md->virt_addr = (u64) ioremap(md->phys_addr, 0); } else if (md->attribute & EFI_MEMORY_WC) {#if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WC | _PAGE_PL_0 | _PAGE_AR_RW));#else printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0);#endif } else if (md->attribute & EFI_MEMORY_WT) {#if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WT | _PAGE_PL_0 | _PAGE_AR_RW));#else printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0);#endif } } } status = efi_call_phys(__va(runtime->set_virtual_address_map), ia64_boot_param->efi_memmap_size, efi_desc_size, ia64_boot_param->efi_memdesc_version, ia64_boot_param->efi_memmap); if (status != EFI_SUCCESS) { printk(KERN_WARNING "warning: unable to switch EFI into virtual mode " "(status=%lu)\n", status); return; } /* * Now that EFI is in virtual mode, we call the EFI functions more efficiently: */ efi.get_time = virt_get_time; efi.set_time = virt_set_time; efi.get_wakeup_time = virt_get_wakeup_time; efi.set_wakeup_time = virt_set_wakeup_time; efi.get_variable = virt_get_variable; efi.get_next_variable = virt_get_next_variable; efi.set_variable = virt_set_variable; efi.get_next_high_mono_count = virt_get_next_high_mono_count; efi.reset_system = virt_reset_system;}/* * Walk the EFI memory map looking for the I/O port range. There can only be one entry of * this type, other I/O port ranges should be described via ACPI. */u64efi_get_iobase (void){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { if (md->attribute & EFI_MEMORY_UC) return md->phys_addr; } } return 0;}static efi_memory_desc_t *efi_memory_descriptor (unsigned long phys_addr){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) return md; } return 0;}static intefi_memmap_has_mmio (void){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type == EFI_MEMORY_MAPPED_IO) return 1; } return 0;}u32efi_mem_type (unsigned long phys_addr){ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); if (md) return md->type; return 0;}u64efi_mem_attributes (unsigned long phys_addr){ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); if (md) return md->attribute; return 0;}EXPORT_SYMBOL(efi_mem_attributes);/* * Determines whether the memory at phys_addr supports the desired * attribute (WB, UC, etc). If this returns 1, the caller can safely * access *size bytes at phys_addr with the specified attribute. */static intefi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr){ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); unsigned long md_end; if (!md || (md->attribute & attr) != attr) return 0; do { md_end = efi_md_end(md); if (phys_addr + *size <= md_end) return 1; md = efi_memory_descriptor(md_end); if (!md || (md->attribute & attr) != attr) { *size = md_end - phys_addr; return 1; } } while (md); return 0;}/* * For /dev/mem, we only allow read & write system calls to access * write-back memory, because read & write don't allow the user to * control access size. */intvalid_phys_addr_range (unsigned long phys_addr, unsigned long *size){ return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);}/* * We allow mmap of anything in the EFI memory map that supports * either write-back or uncacheable access. For uncacheable regions, * the supported access sizes are system-dependent, and the user is * responsible for using the correct size. * * Note that this doesn't currently allow access to hot-added memory, * because that doesn't appear in the boot-time EFI memory map. */intvalid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size){ if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB)) return 1; if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC)) return 1; /* * Some firmware doesn't report MMIO regions in the EFI memory map. * The Intel BigSur (a.k.a. HP i2000) has this problem. In this * case, we can't use the EFI memory map to validate mmap requests. */ if (!efi_memmap_has_mmio()) return 1; return 0;}int __initefi_uart_console_only(void){ efi_status_t status; char *s, name[] = "ConOut"; efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; efi_char16_t *utf16, name_utf16[32]; unsigned char data[1024]; unsigned long size = sizeof(data); struct efi_generic_dev_path *hdr, *end_addr; int uart = 0; /* Convert to UTF-16 */ utf16 = name_utf16; s = name; while (*s) *utf16++ = *s++ & 0x7f; *utf16 = 0; status = efi.get_variable(name_utf16, &guid, NULL, &size, data); if (status != EFI_SUCCESS) { printk(KERN_ERR "No EFI %s variable?\n", name); return 0; } hdr = (struct efi_generic_dev_path *) data; end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); while (hdr < end_addr) { if (hdr->type == EFI_DEV_MSG && hdr->sub_type == EFI_DEV_MSG_UART) uart = 1; else if (hdr->type == EFI_DEV_END_PATH || hdr->type == EFI_DEV_END_PATH2) { if (!uart) return 0; if (hdr->sub_type == EFI_DEV_END_ENTIRE) return 1; uart = 0; } hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); } printk(KERN_ERR "Malformed %s value\n", name); return 0;}/* * Look for the first granule aligned memory descriptor memory * that is big enough to hold EFI memory map. Make sure this * descriptor is atleast granule sized so it does not get trimmed */struct kern_memdesc *find_memmap_space (void){ u64 contig_low=0, contig_high=0; u64 as = 0, ae; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 space_needed, efi_desc_size; unsigned long total_mem = 0; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; /* * Worst case: we need 3 kernel descriptors for each efi descriptor * (if every entry has a WB part in the middle, and UC head and tail), * plus one for the end marker. */ space_needed = sizeof(kern_memdesc_t) * (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { continue; } if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_available_memory(md) || md->type == EFI_LOADER_DATA) continue; /* Round ends inward to granule boundaries */ as = max(contig_low, md->phys_addr); ae = min(contig_high, efi_md_end(md)); /* keep within max_addr= command line arg */ ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (ae - as > space_needed) break; } if (p >= efi_map_end) panic("Can't allocate space for kernel memory descriptors"); return __va(as);}/* * Walk the EFI memory map and gather all memory available for kernel * to use. We can allocate partial granules only if the unavailable * parts exist, and are WB. */voidefi_memmap_init(unsigned long *s, unsigned long *e){ struct kern_memdesc *k, *prev = 0; u64 contig_low=0, contig_high=0; u64 as, ae, lim; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 efi_desc_size; unsigned long total_mem = 0; k = kern_memmap = find_memmap_space(); efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY || md->type == EFI_BOOT_SERVICES_DATA)) { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = md->num_pages; k++; } continue; } if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_available_memory(md)) continue; /* * Round ends inward to granule boundaries * Give trimmings to uncached allocator */ if (md->phys_addr < contig_low) { lim = min(efi_md_end(md), contig_low); if (efi_uc(md)) { if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT; } else { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT; k++; } } as = contig_low; } else as = md->phys_addr; if (efi_md_end(md) > contig_high) { lim = max(md->phys_addr, contig_high); if (efi_uc(md)) { if (lim == md->phys_addr && k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += md->num_pages; } else { k->attribute = EFI_MEMORY_UC; k->start = lim; k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT; k++; } } ae = contig_high; } else ae = efi_md_end(md); /* keep within max_addr= command line arg */ ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (prev && kmd_end(prev) == md->phys_addr) { prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; continue; } k->attribute = EFI_MEMORY_WB; k->start = as; k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; prev = k++; } k->start = ~0L; /* end-marker */ /* reserve the memory we are using for kern_memmap */ *s = (u64)kern_memmap; *e = (u64)++k;}voidefi_initialize_iomem_resources(struct resource *code_resource, struct resource *data_resource){ struct resource *res; void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; char *name; unsigned long flags; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; res = NULL; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->num_pages == 0) /* should not happen */ continue; flags = IORESOURCE_MEM; switch (md->type) { case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: continue; case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_CONVENTIONAL_MEMORY: if (md->attribute & EFI_MEMORY_WP) { name = "System ROM"; flags |= IORESOURCE_READONLY; } else { name = "System RAM"; } break; case EFI_ACPI_MEMORY_NVS: name = "ACPI Non-volatile Storage"; flags |= IORESOURCE_BUSY; break; case EFI_UNUSABLE_MEMORY: name = "reserved"; flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED; break; case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_ACPI_RECLAIM_MEMORY: default: name = "reserved"; flags |= IORESOURCE_BUSY; break; } if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { printk(KERN_ERR "failed to alocate resource for iomem\n"); return; } res->name = name; res->start = md->phys_addr; res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; res->flags = flags; if (insert_resource(&iomem_resource, res) < 0) kfree(res); else { /* * We don't know which region contains * kernel data so we try it repeatedly and * let the resource manager test it. */ insert_resource(res, code_resource); insert_resource(res, data_resource); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -