📄 regexp.c
字号:
/* * TclRegComp and TclRegExec -- TclRegSub is elsewhere * * Copyright (c) 1986 by University of Toronto. * Written by Henry Spencer. Not derived from licensed software. * * Permission is granted to anyone to use this software for any * purpose on any computer system, and to redistribute it freely, * subject to the following restrictions: * * 1. The author is not responsible for the consequences of use of * this software, no matter how awful, even if they arise * from defects in it. * * 2. The origin of this software must not be misrepresented, either * by explicit claim or by omission. * * 3. Altered versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * Beware that some of this code is subtly aware of the way operator * precedence is structured in regular expressions. Serious changes in * regular-expression syntax might require a total rethink. * * *** NOTE: this code has been altered slightly for use in Tcl: *** * *** 1. Use ckalloc and ckfree instead of malloc and free. *** * *** 2. Add extra argument to regexp to specify the real *** * *** start of the string separately from the start of the *** * *** current search. This is needed to search for multiple *** * *** matches within a string. *** * *** 3. Names have been changed, e.g. from regcomp to *** * *** TclRegComp, to avoid clashes with other *** * *** regexp implementations used by applications. *** * *** 4. Added errMsg declaration and TclRegError procedure *** * *** 5. Various lint-like things, such as casting arguments *** * *** in procedure calls. *** * * *** NOTE: This code has been altered for use in MT-Sturdy Tcl *** * *** 1. All use of static variables has been changed to access *** * *** fields of a structure. *** * *** 2. This in addition to changes to TclRegError makes the *** * *** code multi-thread safe. *** * * SCCS: @(#) regexp.c 1.13 97/04/29 17:49:17 */#include "tclInt.h"#include "tclPort.h"/* * The variable below is set to NULL before invoking regexp functions * and checked after those functions. If an error occurred then TclRegError * will set the variable to point to a (static) error message. This * mechanism unfortunately does not support multi-threading, but the * procedures TclRegError and TclGetRegError can be modified to use * thread-specific storage for the variable and thereby make the code * thread-safe. */static char *errMsg = NULL;/* * The "internal use only" fields in regexp.h are present to pass info from * compile to execute that permits the execute phase to run lots faster on * simple cases. They are: * * regstart char that must begin a match; '\0' if none obvious * reganch is the match anchored (at beginning-of-line only)? * regmust string (pointer into program) that match must include, or NULL * regmlen length of regmust string * * Regstart and reganch permit very fast decisions on suitable starting points * for a match, cutting down the work a lot. Regmust permits fast rejection * of lines that cannot possibly match. The regmust tests are costly enough * that TclRegComp() supplies a regmust only if the r.e. contains something * potentially expensive (at present, the only such thing detected is * or + * at the start of the r.e., which can involve a lot of backup). Regmlen is * supplied because the test in TclRegExec() needs it and TclRegComp() is * computing it anyway. *//* * Structure for regexp "program". This is essentially a linear encoding * of a nondeterministic finite-state machine (aka syntax charts or * "railroad normal form" in parsing technology). Each node is an opcode * plus a "next" pointer, possibly plus an operand. "Next" pointers of * all nodes except BRANCH implement concatenation; a "next" pointer with * a BRANCH on both ends of it is connecting two alternatives. (Here we * have one of the subtle syntax dependencies: an individual BRANCH (as * opposed to a collection of them) is never concatenated with anything * because of operator precedence.) The operand of some types of node is * a literal string; for others, it is a node leading into a sub-FSM. In * particular, the operand of a BRANCH node is the first node of the branch. * (NB this is *not* a tree structure: the tail of the branch connects * to the thing following the set of BRANCHes.) The opcodes are: *//* definition number opnd? meaning */#define END 0 /* no End of program. */#define BOL 1 /* no Match "" at beginning of line. */#define EOL 2 /* no Match "" at end of line. */#define ANY 3 /* no Match any one character. */#define ANYOF 4 /* str Match any character in this string. */#define ANYBUT 5 /* str Match any character not in this string. */#define BRANCH 6 /* node Match this alternative, or the next... */#define BACK 7 /* no Match "", "next" ptr points backward. */#define EXACTLY 8 /* str Match this string. */#define NOTHING 9 /* no Match empty string. */#define STAR 10 /* node Match this (simple) thing 0 or more times. */#define PLUS 11 /* node Match this (simple) thing 1 or more times. */#define OPEN 20 /* no Mark this point in input as start of #n. */ /* OPEN+1 is number 1, etc. */#define CLOSE (OPEN+NSUBEXP) /* no Analogous to OPEN. *//* * Opcode notes: * * BRANCH The set of branches constituting a single choice are hooked * together with their "next" pointers, since precedence prevents * anything being concatenated to any individual branch. The * "next" pointer of the last BRANCH in a choice points to the * thing following the whole choice. This is also where the * final "next" pointer of each individual branch points; each * branch starts with the operand node of a BRANCH node. * * BACK Normal "next" pointers all implicitly point forward; BACK * exists to make loop structures possible. * * STAR,PLUS '?', and complex '*' and '+', are implemented as circular * BRANCH structures using BACK. Simple cases (one character * per match) are implemented with STAR and PLUS for speed * and to minimize recursive plunges. * * OPEN,CLOSE ...are numbered at compile time. *//* * A node is one char of opcode followed by two chars of "next" pointer. * "Next" pointers are stored as two 8-bit pieces, high order first. The * value is a positive offset from the opcode of the node containing it. * An operand, if any, simply follows the node. (Note that much of the * code generation knows about this implicit relationship.) * * Using two bytes for the "next" pointer is vast overkill for most things, * but allows patterns to get big without disasters. */#define OP(p) (*(p))#define NEXT(p) (((*((p)+1)&0377)<<8) + (*((p)+2)&0377))#define OPERAND(p) ((p) + 3)/* * See regmagic.h for one further detail of program structure. *//* * Utility definitions. */#ifndef CHARBITS#define UCHARAT(p) ((int)*(unsigned char *)(p))#else#define UCHARAT(p) ((int)*(p)&CHARBITS)#endif#define FAIL(m) { TclRegError(m); return(NULL); }#define ISMULT(c) ((c) == '*' || (c) == '+' || (c) == '?')#define META "^$.[()|?+*\\"/* * Flags to be passed up and down. */#define HASWIDTH 01 /* Known never to match null string. */#define SIMPLE 02 /* Simple enough to be STAR/PLUS operand. */#define SPSTART 04 /* Starts with * or +. */#define WORST 0 /* Worst case. *//* * Global work variables for TclRegComp(). */struct regcomp_state { char *regparse; /* Input-scan pointer. */ int regnpar; /* () count. */ char *regcode; /* Code-emit pointer; ®dummy = don't. */ long regsize; /* Code size. */};static char regdummy;/* * The first byte of the regexp internal "program" is actually this magic * number; the start node begins in the second byte. */#define MAGIC 0234/* * Forward declarations for TclRegComp()'s friends. */static char * reg _ANSI_ARGS_((int paren, int *flagp, struct regcomp_state *rcstate));static char * regatom _ANSI_ARGS_((int *flagp, struct regcomp_state *rcstate));static char * regbranch _ANSI_ARGS_((int *flagp, struct regcomp_state *rcstate));static void regc _ANSI_ARGS_((int b, struct regcomp_state *rcstate));static void reginsert _ANSI_ARGS_((int op, char *opnd, struct regcomp_state *rcstate));static char * regnext _ANSI_ARGS_((char *p));static char * regnode _ANSI_ARGS_((int op, struct regcomp_state *rcstate));static void regoptail _ANSI_ARGS_((char *p, char *val));static char * regpiece _ANSI_ARGS_((int *flagp, struct regcomp_state *rcstate));static void regtail _ANSI_ARGS_((char *p, char *val));#ifdef STRCSPNstatic int strcspn _ANSI_ARGS_((char *s1, char *s2));#endif/* - TclRegComp - compile a regular expression into internal code * * We can't allocate space until we know how big the compiled form will be, * but we can't compile it (and thus know how big it is) until we've got a * place to put the code. So we cheat: we compile it twice, once with code * generation turned off and size counting turned on, and once "for real". * This also means that we don't allocate space until we are sure that the * thing really will compile successfully, and we never have to move the * code and thus invalidate pointers into it. (Note that it has to be in * one piece because free() must be able to free it all.) * * Beware that the optimization-preparation code in here knows about some * of the structure of the compiled regexp. */regexp *TclRegComp(exp)char *exp;{ register regexp *r; register char *scan; register char *longest; register int len; int flags; struct regcomp_state state; struct regcomp_state *rcstate= &state; if (exp == NULL) FAIL("NULL argument"); /* First pass: determine size, legality. */ rcstate->regparse = exp; rcstate->regnpar = 1; rcstate->regsize = 0L; rcstate->regcode = ®dummy; regc(MAGIC, rcstate); if (reg(0, &flags, rcstate) == NULL) return(NULL); /* Small enough for pointer-storage convention? */ if (rcstate->regsize >= 32767L) /* Probably could be 65535L. */ FAIL("regexp too big"); /* Allocate space. */ r = (regexp *)ckalloc(sizeof(regexp) + (unsigned)rcstate->regsize); if (r == NULL) FAIL("out of space"); /* Second pass: emit code. */ rcstate->regparse = exp; rcstate->regnpar = 1; rcstate->regcode = r->program; regc(MAGIC, rcstate); if (reg(0, &flags, rcstate) == NULL) return(NULL); /* Dig out information for optimizations. */ r->regstart = '\0'; /* Worst-case defaults. */ r->reganch = 0; r->regmust = NULL; r->regmlen = 0; scan = r->program+1; /* First BRANCH. */ if (OP(regnext(scan)) == END) { /* Only one top-level choice. */ scan = OPERAND(scan); /* Starting-point info. */ if (OP(scan) == EXACTLY) r->regstart = *OPERAND(scan); else if (OP(scan) == BOL) r->reganch++; /* * If there's something expensive in the r.e., find the * longest literal string that must appear and make it the * regmust. Resolve ties in favor of later strings, since * the regstart check works with the beginning of the r.e. * and avoiding duplication strengthens checking. Not a * strong reason, but sufficient in the absence of others. */ if (flags&SPSTART) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) if (OP(scan) == EXACTLY && ((int) strlen(OPERAND(scan))) >= len) { longest = OPERAND(scan); len = strlen(OPERAND(scan)); } r->regmust = longest; r->regmlen = len; } } return(r);}/* - reg - regular expression, i.e. main body or parenthesized thing * * Caller must absorb opening parenthesis. * * Combining parenthesis handling with the base level of regular expression * is a trifle forced, but the need to tie the tails of the branches to what * follows makes it hard to avoid. */static char *reg(paren, flagp, rcstate)int paren; /* Parenthesized? */int *flagp;struct regcomp_state *rcstate;{ register char *ret; register char *br; register char *ender; register int parno = 0; int flags; *flagp = HASWIDTH; /* Tentatively. */ /* Make an OPEN node, if parenthesized. */ if (paren) { if (rcstate->regnpar >= NSUBEXP) FAIL("too many ()"); parno = rcstate->regnpar; rcstate->regnpar++; ret = regnode(OPEN+parno,rcstate); } else ret = NULL; /* Pick up the branches, linking them together. */ br = regbranch(&flags,rcstate); if (br == NULL) return(NULL); if (ret != NULL) regtail(ret, br); /* OPEN -> first. */ else ret = br; if (!(flags&HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags&SPSTART; while (*rcstate->regparse == '|') { rcstate->regparse++; br = regbranch(&flags,rcstate); if (br == NULL) return(NULL); regtail(ret, br); /* BRANCH -> BRANCH. */ if (!(flags&HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags&SPSTART; } /* Make a closing node, and hook it on the end. */ ender = regnode((paren) ? CLOSE+parno : END,rcstate); regtail(ret, ender); /* Hook the tails of the branches to the closing node. */ for (br = ret; br != NULL; br = regnext(br)) regoptail(br, ender); /* Check for proper termination. */ if (paren && *rcstate->regparse++ != ')') { FAIL("unmatched ()"); } else if (!paren && *rcstate->regparse != '\0') { if (*rcstate->regparse == ')') { FAIL("unmatched ()"); } else FAIL("junk on end"); /* "Can't happen". */ /* NOTREACHED */ } return(ret);}/* - regbranch - one alternative of an | operator * * Implements the concatenation operator. */static char *regbranch(flagp, rcstate)int *flagp;struct regcomp_state *rcstate;{ register char *ret; register char *chain; register char *latest; int flags; *flagp = WORST; /* Tentatively. */ ret = regnode(BRANCH,rcstate); chain = NULL; while (*rcstate->regparse != '\0' && *rcstate->regparse != '|' && *rcstate->regparse != ')') { latest = regpiece(&flags, rcstate); if (latest == NULL) return(NULL); *flagp |= flags&HASWIDTH; if (chain == NULL) /* First piece. */ *flagp |= flags&SPSTART; else regtail(chain, latest); chain = latest; } if (chain == NULL) /* Loop ran zero times. */ (void) regnode(NOTHING,rcstate); return(ret);}/* - regpiece - something followed by possible [*+?] * * Note that the branching code sequences used for ? and the general cases * of * and + are somewhat optimized: they use the same NOTHING node as * both the endmarker for their branch list and the body of the last branch. * It might seem that this node could be dispensed with entirely, but the * endmarker role is not redundant. */static char *regpiece(flagp, rcstate)int *flagp;struct regcomp_state *rcstate;{ register char *ret;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -