📄 iwt_ai.m
字号:
function beta = IWT_AI(wc,L,D,F,EF)
% IWT_AI -- Inverse transform, average-interpolating wavelets
% Usage
% x = IWT_AI(wc,L,D)
% Inputs
% wc 1-d wavelet transform; length(x) = 2^J
% L coarsest resolution. L << J
% D degree of polynomials for average interpolation
% Outputs
% x 1-d signal reconstructed from wc
%
% Description
% IWT_AI implements a 1-d inverse wavelet transform of data which
% arise as the outputs of boxcar integrators. The ideas are
% described in ``Smooth Wavelet Decompositions with Blocky
% Coefficient Kernels.'' See BlockyDemo and the directory
% Scripts/Blocky.
%
% See Also
% FWT_AI, FWT_DD, FWT_PO
%
if nargin == 3,
F = MakeAIFilter(D);
EF = MakeAIBdryFilter(D);
end
[n,J] = dyadlength(wc);
w = ShapeAsRow(wc);
beta = w(1:(2^L));
%
for j=L:(J-1) ,
beta = AIDyadUp(beta,w(dyad(j)),D,F,EF);
end
%
x = ShapeLike(beta,wc);
%
% Part of WaveLab Version 802
% Built Sunday, October 3, 1999 8:52:27 AM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -