📄 csupervisedlearner.cpp
字号:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)
//
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "csupervisedlearner.h"
CSupervisedLearner::CSupervisedLearner(int nInputs, int nOutputs)
{
outputError = new CMyVector(nOutputs);
}
CSupervisedLearner::~CSupervisedLearner()
{
delete outputError;
}
void CSupervisedLearner::learnExample(CMyVector *input, CMyVector *target)
{
testExample(input, outputError);
outputError->multScalar(-1.0);
outputError->addVector(target);
learnExample(input, target, outputError);
}
CSupervisedGradientFunctionLearner::CSupervisedGradientFunctionLearner(CGradientFunction *gradientFunction) : CSupervisedLearner(gradientFunction->getNumInputs(), gradientFunction->getNumOutputs())
{
this->gradientFunction = gradientFunction;
this->gradient = new CFeatureList();
this->localGradient = new CFeatureList();
addParameter("SGLLearningRate", 0.01);
addParameter("SGMLMomentum",0.1);
addParameters(gradientFunction);
}
CSupervisedGradientFunctionLearner::~CSupervisedGradientFunctionLearner()
{
delete gradient;
}
void CSupervisedGradientFunctionLearner::learnExample(CMyVector *input, CMyVector *target, CMyVector *outputError)
{
localGradient->clear();
gradient->multFactor(getParameter("SGMLMomentum"));
gradientFunction->getGradient(input, outputError, localGradient);
gradient->add(localGradient);
gradientFunction->updateGradient(gradient, getParameter("SGLLearningRate"));
}
void CSupervisedGradientFunctionLearner::testExample(CMyVector *input, CMyVector *output)
{
gradientFunction->getFunctionValue(input, output);
}
int CSupervisedGradientFunctionLearner::getNumInputs()
{
return gradientFunction->getNumInputs();
}
int CSupervisedGradientFunctionLearner::getNumOutputs()
{
return gradientFunction->getNumOutputs();
}
void CSupervisedGradientFunctionLearner::saveData(FILE *stream)
{
gradientFunction->saveData(stream);
}
void CSupervisedGradientFunctionLearner::loadData(FILE *stream)
{
gradientFunction->loadData(stream);
}
void CSupervisedGradientFunctionLearner::resetData()
{
gradientFunction->resetData();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -