⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cadvantagelearning.h

📁 强化学习算法(R-Learning)难得的珍贵资料
💻 H
字号:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)

//                
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef CADVANTAGELEARNING_H
#define CADVANTAGELEARNING_H

#include "ctdlearner.h"
#include "cvfunctionlearner.h"
#include "ril_debug.h"

class CAdvantageUpdating : public CTDLearner
{
protected:
	//CVFunctionLearner *vFunctionLearner;
	CAbstractVFunction *vFunction;
	CAbstractVETraces *vETraces;

	virtual rlt_real getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState);

	virtual void addETraces(CStateCollection *oldState, CStateCollection *newState, CAction *action);
	virtual void learnStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState);
public:
	//CAdvantageUpdating(CRewardFunction *rewardFunction, CAbstractQFunction *qfunction, CVFunctionLearner *vLearner, rlt_real dt);		
	CAdvantageUpdating(CRewardFunction *rewardFunction, CAbstractQFunction *qfunction, CAbstractVFunction *vFunction, rlt_real dt);		
	virtual ~CAdvantageUpdating();		

};

class CAdvantageLearner : public CTDResidualLearner
{

protected:
	CActionDataSet *actionDataSet2;

	virtual rlt_real getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState);

	virtual void addETraces(CStateCollection *oldState, CStateCollection *newState, CAction *action, rlt_real td = 0.0);

public:

	CAdvantageLearner(CRewardFunction *rewardFunction, CGradientQFunction *qfunction, rlt_real dt, CAbstractBetaCalculator *betaCalc);		
	~CAdvantageLearner();
};

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -