📄 ccontinuoustime.cpp
字号:
{
delete derivationState;
delete c;
delete actionValues;
delete derivationU;
delete derivationX;
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::getNextContinuousAction(CStateCollection *state, CContinuousActionData *action)
{
model->getDerivationU(state->getState(model->getStateProperties()), derivationU);
dVFunction->getInputDerivation(state, derivationX);
derivationX->multMatrix(derivationU, actionValues);
noise->initVector(0.0);
if (randomController && randomControllerMode == INTERN_RANDOM_CONTROLLER)
{
randomController->getNextContinuousAction(state, noise);
}
getActionValues(actionValues, noise);
action->setVector(actionValues);
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::getActionValues(CMyVector *actionValues, CMyVector *noise)
{
actionValues->dotVector(c);
actionValues->multScalar(getParameter("SigmoidPolicyCFactor"));
actionValues->addVector(noise);
for (unsigned int i = 0; i < actionValues->getNumDimensions(); i++)
{
rlt_real umax = getContinuousActionProperties()->getMaxActionValue(i);
rlt_real umin = getContinuousActionProperties()->getMinActionValue(i);
if (actionValues->getElement(i) < - 400)
{
actionValues->setElement(i, -400);
}
rlt_real s = 1/(1 + exp(-(actionValues->getElement(i))));
actionValues->setElement(i, umin + s * (umax - umin));
}
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::getNoise(CStateCollection *state, CContinuousActionData *action, CContinuousActionData *l_noise)
{
rlt_real generalC = getParameter("SigmoidPolicyCFactor");
if (randomControllerMode == INTERN_RANDOM_CONTROLLER)
{
CMyVector tempVector(contAction->getNumDimensions());
model->getDerivationU(state->getState(model->getStateProperties()), derivationU);
dVFunction->getInputDerivation(state, derivationX);
derivationX->multMatrix(derivationU, l_noise);
tempVector.setVector(action);
for (int i = 0; i < tempVector.getNumDimensions(); i ++)
{
rlt_real umax = getContinuousActionProperties()->getMaxActionValue(i);
rlt_real umin = getContinuousActionProperties()->getMinActionValue(i);
rlt_real actionValue = tempVector.getElement(i);
actionValue = (actionValue - umin) / (umax - umin);
actionValue = - log(1 / actionValue - 1) / generalC / c->getElement(i);
tempVector.setElement(i, actionValue);
}
l_noise->multScalar(-1.0);
l_noise->addVector(&tempVector);
}
else
{
CContinuousActionController::getNoise(state, action, l_noise);
}
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::setC(int index, rlt_real value)
{
c->setElement(index, value);
}
rlt_real CContinuousTimeAndActionSigmoidVMGradientPolicy::getC(int index)
{
return c->getElement(index);
}
int CContinuousTimeAndActionSigmoidVMGradientPolicy::getNumWeights()
{
return vFunction->getNumWeights();
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::getWeights(rlt_real *parameters)
{
vFunction->getWeights(parameters);
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::setWeights(rlt_real *parameters)
{
vFunction->setWeights(parameters);
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::updateWeights(CFeatureList *dParams)
{
vFunction->updateGradient(dParams);
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::getGradient(CStateCollection *currentState, int outputDimension, CFeatureList *gradientFeatures)
{
gradientFeatures->clear();
model->getDerivationU(currentState->getState(model->getStateProperties()), derivationU);
dVFunction->getInputDerivation(currentState, derivationX);
derivationX->multMatrix(derivationU, actionValues);
rlt_real prodFactor = my_exp(- actionValues->getElement(outputDimension));
rlt_real stepSize = 0.01;
prodFactor = prodFactor / pow(1.0 + prodFactor, 2.0); // s'(dV/dx * df/du)
CState *inputState = derivationState->getState(modelState);
inputState->setState(currentState->getState(modelState));
for (int x_i = 0; x_i < modelState->getNumContinuousStates(); x_i++)
{
gradient1->clear();
gradient2->clear();
rlt_real stepSize_i = (modelState->getMaxValue(x_i) - modelState->getMinValue(x_i)) * stepSize;
inputState->setContinuousState(x_i, inputState->getContinuousState(x_i) + stepSize_i);
derivationState->newModelState();
vFunction->getGradient(derivationState, gradient1);
inputState->setContinuousState(x_i, inputState->getContinuousState(x_i) - 2 * stepSize_i);
derivationState->newModelState();
vFunction->getGradient(derivationState, gradient2);
inputState->setContinuousState(x_i, inputState->getContinuousState(x_i) + stepSize_i);
gradient1->add(gradient2, -1.0);
gradientFeatures->add(gradient1, prodFactor * derivationU->getElement(x_i, outputDimension) / (2 * stepSize_i));
}
}
void CContinuousTimeAndActionSigmoidVMGradientPolicy::resetData()
{
vFunction->resetData();
}
CContinuousTimeAndActionBangBangVMPolicy::CContinuousTimeAndActionBangBangVMPolicy(CContinuousAction *action, CVFunctionInputDerivationCalculator *vfunction, CTransitionFunction *model) : CContinuousTimeAndActionVMPolicy(action, vfunction, model)
{
}
void CContinuousTimeAndActionBangBangVMPolicy::getNoise(CStateCollection *state, CContinuousActionData *action, CContinuousActionData *l_noise)
{
CContinuousActionController::getNoise(state, action, l_noise);
}
void CContinuousTimeAndActionBangBangVMPolicy::getActionValues(CMyVector *actionValues, CMyVector *noise)
{
actionValues->addVector(noise);
for (unsigned int i = 0; i < actionValues->getNumDimensions(); i++)
{
rlt_real umax = getContinuousActionProperties()->getMaxActionValue(i);
rlt_real umin = getContinuousActionProperties()->getMinActionValue(i);
if (actionValues->getElement(i) > 0)
{
actionValues->setElement(i, umax);
}
else
{
actionValues->setElement(i, umin);
}
}
}
CContinuousActionSmoother::CContinuousActionSmoother(CContinuousAction *action, CContinuousActionController *policy, rlt_real alpha) : CContinuousActionController(action)
{
this->policy = policy;
this->alpha = alpha;
this->actionValues = new rlt_real[contAction->getContinuousActionProperties()->getNumActionValues()];
for (int i = 0; i < contAction->getNumDimensions(); i++)
{
actionValues[i] = 0.0;
}
}
CContinuousActionSmoother::~CContinuousActionSmoother()
{
delete [] actionValues;
}
void CContinuousActionSmoother::getNextContinuousAction(CStateCollection *state, CContinuousActionData *data)
{
policy->getNextContinuousAction(state, data);
for (int i = 0; i < contAction->getNumDimensions(); i++)
{
data->setElement(i, data->getElement(i) * (1 - getAlpha()) + getAlpha() * actionValues[i]);
actionValues[i] = data->getElement(i);
}
}
void CContinuousActionSmoother::setAlpha(rlt_real alpha)
{
this->alpha = alpha;
}
rlt_real CContinuousActionSmoother::getAlpha()
{
return alpha;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -