📄 ccontinuoustime.cpp
字号:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)
//
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ril_debug.h"
#include "ccontinuoustime.h"
#include <assert.h>
#include <math.h>
rlt_real CContinuousTimeParameters::getGammaFromSgamma(rlt_real sgamma, rlt_real dt)
{
return 1 - dt * sgamma;
}
rlt_real CContinuousTimeParameters::getLambdaFromKappa(rlt_real kappa, rlt_real sgamma, rlt_real dt)
{
return (kappa - dt) / (1 / sgamma - dt);
}
CContinuousTimeVMPolicy::CContinuousTimeVMPolicy(CActionSet *actions, CActionDistribution *distribution, CVFunctionInputDerivationCalculator *vFunction, CDynamicContinuousTimeModel *model, CRewardFunction *rewardFunction) : CQStochasticPolicy(actions, distribution, new CContinuousTimeQFunctionFromTransitionFunction(actions, vFunction, model, rewardFunction))
{
this->vfunction = vFunction;
this->model = model;
addParameters(vFunction);
// assert(vfunction->getNumContinuousStates() == model->getNumContinuousStates());
}
CContinuousTimeVMPolicy::~CContinuousTimeVMPolicy()
{
delete this->qfunction;
}
CContinuousTimeQFunctionFromTransitionFunction *CContinuousTimeVMPolicy::getQFunctionFromTransitionFunction()
{
return dynamic_cast<CContinuousTimeQFunctionFromTransitionFunction *>(qfunction);
}
CContinuousTimeAndActionVMPolicy::CContinuousTimeAndActionVMPolicy(CContinuousAction *action, CVFunctionInputDerivationCalculator *dvFunction, CTransitionFunction *model) : CContinuousActionController(action, false)
{
this->dVFunction = dvFunction;
this->model = model;
assert(this->dVFunction->getNumInputs() == model->getNumContinuousStates());
assert(model->isType(DM_DERIVATIONUMODEL));
actionValues = new CMyVector(getContinuousActionProperties()->getNumActionValues());
derivationU = new CMyMatrix(model->getNumContinuousStates(), getContinuousActionProperties()->getNumActionValues());
derivationX = new CMyVector(model->getNumContinuousStates());
//noise = new CContinuousActionData(getContinuousActionProperties());
randomControllerMode = INTERN_RANDOM_CONTROLLER;
addParameters(dvFunction);
}
CContinuousTimeAndActionVMPolicy::~CContinuousTimeAndActionVMPolicy()
{
delete actionValues;
delete derivationU;
delete derivationX;
//delete noise;
}
void CContinuousTimeAndActionVMPolicy::getNextContinuousAction(CStateCollection *state, CContinuousActionData *action)
{
model->getDerivationU(state->getState(model->getStateProperties()), derivationU);
dVFunction->getInputDerivation(state, derivationX);
derivationX->multMatrix(derivationU, actionValues);
noise->initVector(0.0);
if (randomController && randomControllerMode == INTERN_RANDOM_CONTROLLER)
{
randomController->getNextContinuousAction(state, noise);
}
getActionValues(actionValues, noise);
action->setVector(actionValues);
}
CContinuousTimeAndActionSigmoidVMPolicy::CContinuousTimeAndActionSigmoidVMPolicy(CContinuousAction *action, CVFunctionInputDerivationCalculator *vfunction, CTransitionFunction *model) : CContinuousTimeAndActionVMPolicy(action, vfunction, model)
{
c = new CMyVector(action->getContinuousActionProperties()->getNumActionValues());
c->initVector(1.0);
addParameter("SigmoidPolicyCFactor", 100.0);
}
CContinuousTimeAndActionSigmoidVMPolicy::~CContinuousTimeAndActionSigmoidVMPolicy()
{
delete c;
}
void CContinuousTimeAndActionSigmoidVMPolicy::getActionValues(CMyVector *actionValues, CMyVector *noise)
{
actionValues->dotVector(c);
actionValues->multScalar(getParameter("SigmoidPolicyCFactor"));
actionValues->addVector(noise);
for (unsigned int i = 0; i < actionValues->getNumDimensions(); i++)
{
rlt_real umax = getContinuousActionProperties()->getMaxActionValue(i);
rlt_real umin = getContinuousActionProperties()->getMinActionValue(i);
if (actionValues->getElement(i) < - 400)
{
actionValues->setElement(i, -400);
}
rlt_real s = 1/(1 + exp(-(actionValues->getElement(i))));
actionValues->setElement(i, umin + s * (umax - umin));
}
}
void CContinuousTimeAndActionSigmoidVMPolicy::getNoise(CStateCollection *state, CContinuousActionData *action, CContinuousActionData *l_noise)
{
rlt_real generalC = getParameter("SigmoidPolicyCFactor");
if (randomControllerMode == INTERN_RANDOM_CONTROLLER)
{
CMyVector tempVector(contAction->getNumDimensions());
model->getDerivationU(state->getState(model->getStateProperties()), derivationU);
dVFunction->getInputDerivation(state, derivationX);
derivationX->multMatrix(derivationU, l_noise);
tempVector.setVector(action);
for (int i = 0; i < tempVector.getNumDimensions(); i ++)
{
rlt_real umax = getContinuousActionProperties()->getMaxActionValue(i);
rlt_real umin = getContinuousActionProperties()->getMinActionValue(i);
rlt_real actionValue = tempVector.getElement(i);
actionValue = (actionValue - umin) / (umax - umin);
actionValue = - log(1 / actionValue - 1) / generalC / c->getElement(i);
tempVector.setElement(i, actionValue);
}
l_noise->multScalar(-1.0);
l_noise->addVector(&tempVector);
}
else
{
CContinuousActionController::getNoise(state, action, l_noise);
}
}
void CContinuousTimeAndActionSigmoidVMPolicy::setC(int index, rlt_real value)
{
c->setElement(index, value);
}
rlt_real CContinuousTimeAndActionSigmoidVMPolicy::getC(int index)
{
return c->getElement(index);
}
CContinuousTimeAndActionSigmoidVMGradientPolicy::CContinuousTimeAndActionSigmoidVMGradientPolicy(CContinuousAction *action, CGradientVFunction *gradVFunction, CVFunctionInputDerivationCalculator *dvFunction, CTransitionFunction *model, std::list<CStateModifier *> *modifiers) : CContinuousActionGradientPolicy(action, model->getStateProperties())
{
vFunction = gradVFunction;
derivationState = new CStateCollectionImpl(model->getStateProperties(), modifiers);
gradient1 = new CFeatureList();
gradient2 = new CFeatureList();
c = new CMyVector(action->getContinuousActionProperties()->getNumActionValues());
c->initVector(1.0);
addParameter("SigmoidPolicyCFactor", 1.0);
this->dVFunction = dvFunction;
this->model = model;
assert(this->dVFunction->getNumInputs() == model->getNumContinuousStates());
assert(model->isType(DM_DERIVATIONUMODEL));
actionValues = new CMyVector(getContinuousActionProperties()->getNumActionValues());
derivationU = new CMyMatrix(model->getNumContinuousStates(), getContinuousActionProperties()->getNumActionValues());
derivationX = new CMyVector(model->getNumContinuousStates());
//noise = new CContinuousActionData(getContinuousActionProperties());
randomControllerMode = INTERN_RANDOM_CONTROLLER;
addParameters(dvFunction);
}
CContinuousTimeAndActionSigmoidVMGradientPolicy::~CContinuousTimeAndActionSigmoidVMGradientPolicy()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -