📄 cexploration.cpp
字号:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)
//
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "cexploration.h"
CVisitStateCounter::CVisitStateCounter(CFeatureVFunction *visits, rlt_real decay)
{
this->visits = visits;
addParameter("VisitDecayFactor", decay);
addParameter("VisitDecayUpdateSteps", 1);
weights = new rlt_real[visits->getNumWeights()];
steps = 0;
}
CVisitStateCounter::~CVisitStateCounter()
{
delete weights;
}
void CVisitStateCounter::nextStep(CStateCollection *state, CAction *action, CStateCollection *nextState)
{
rlt_real decay = getParameter("VisitDecayFactor");
int updateSteps = my_round(getParameter("VisitDecayUpdateSteps"));
steps ++;
if ((updateSteps > 0) && ((steps % updateSteps) == 0) && (decay < 1.0))
{
doDecay(decay);
}
visits->updateValue(state, 1.0);
}
void CVisitStateCounter::newEpisode()
{
}
void CVisitStateCounter::doDecay(rlt_real decay)
{
visits->getWeights(weights);
for (int i = 0; i < visits->getNumWeights(); i++)
{
weights[i] *= decay;
}
visits->setWeights(weights);
}
CVisitStateActionCounter::CVisitStateActionCounter(CFeatureQFunction *visits, rlt_real decay )
{
this->visits = visits;
addParameter("VisitDecayFactor", decay);
addParameter("VisitDecayUpdateSteps", 1);
weights = new rlt_real[visits->getNumWeights()];
steps = 0;
}
CVisitStateActionCounter::~CVisitStateActionCounter()
{
delete weights;
}
void CVisitStateActionCounter::doDecay(rlt_real decay)
{
visits->getWeights(weights);
for (int i = 0; i < visits->getNumWeights(); i++)
{
weights[i] *= decay;
}
visits->setWeights(weights);
}
void CVisitStateActionCounter::nextStep(CStateCollection *state, CAction *action, CStateCollection *nextState)
{
rlt_real decay = getParameter("VisitDecayFactor");
int updateSteps = my_round(getParameter("VisitDecayUpdateSteps"));
steps ++;
if ((updateSteps > 0) && ((steps % updateSteps) == 0) && (decay < 1.0))
{
doDecay(decay);
}
visits->updateValue(state, action, 1.0);
}
void CVisitStateActionCounter::newEpisode()
{
}
CVisitStateActionEstimator::CVisitStateActionEstimator(CFeatureVFunction *visits, CFeatureQFunction *actionVisits, rlt_real decay ) : CVisitStateCounter(visits, decay)
{
this->actionVisits = actionVisits;
addParameter("VisitsEstimatorLearningRate", 0.5);
}
CVisitStateActionEstimator::~CVisitStateActionEstimator()
{
}
void CVisitStateActionEstimator::doDecay(rlt_real decay)
{
actionVisits->getWeights(weights);
for (int i = 0; i < visits->getNumWeights(); i++)
{
weights[i] *= decay;
}
visits->setWeights(weights);
}
void CVisitStateActionEstimator::nextStep(CStateCollection *state, CAction *action, CStateCollection *nextState)
{
rlt_real oldValue = actionVisits->getValue(state, action);
rlt_real newVisits = visits->getValue(nextState);
CVisitStateCounter::nextStep(state, action, nextState);
actionVisits->updateValue(state, action, getParameter("VisitsEstimatorLearningRate") * (newVisits - oldValue));
}
void CVisitStateActionEstimator::newEpisode()
{
}
CExplorationQFunction::CExplorationQFunction(CAbstractVFunction *stateVisitCounter, CAbstractQFunction *actionVisitCounter) : CAbstractQFunction(actionVisitCounter->getActions())
{
this->actionVisitCounter = actionVisitCounter;
this->stateVisitCounter = stateVisitCounter;
}
CExplorationQFunction::~CExplorationQFunction()
{
}
void CExplorationQFunction::updateValue(CStateCollection *state, CAction *action, rlt_real td, CActionData *data)
{
}
void CExplorationQFunction::setValue(CStateCollection *state, CAction *action, rlt_real qValue, CActionData *data)
{
}
rlt_real CExplorationQFunction::getValue(CStateCollection *state, CAction *action, CActionData *data)
{
rlt_real vValue = stateVisitCounter->getValue(state);
rlt_real qValue = actionVisitCounter->getValue(state, action);
if (fabs(qValue) < 0.000001)
{
qValue = 0.00001;
}
return vValue / qValue;
}
CAbstractQETraces *CExplorationQFunction::getStandardETraces()
{
return NULL;
}
CRewardFunctionFromValueFunction::CRewardFunctionFromValueFunction(CAbstractVFunction *vFunction, bool useNewState)
{
this->vFunction = vFunction;
this->useNewState = useNewState;
}
rlt_real CRewardFunctionFromValueFunction::getReward(CStateCollection *oldState, CAction *action, CStateCollection *newState)
{
rlt_real value = 0.0;
if (useNewState)
{
value = vFunction->getValue(newState);
}
else
{
value = vFunction->getValue(oldState);
}
return value;
}
CFeatureRewardFunctionFromValueFunction::CFeatureRewardFunctionFromValueFunction(CStateModifier *discretizer, CFeatureVFunction *vFunction, bool useNewState) : CFeatureRewardFunction(discretizer)
{
this->vFunction = vFunction;
this->useNewState = useNewState;
}
CFeatureRewardFunctionFromValueFunction::~CFeatureRewardFunctionFromValueFunction()
{
}
rlt_real CFeatureRewardFunctionFromValueFunction::getReward(int oldState, CAction *action, int newState)
{
rlt_real value = 0.0;
if (useNewState)
{
value = vFunction->getFeature(newState);
}
else
{
value = vFunction->getFeature(oldState);
}
return value;
}
CQStochasticExplorationPolicy::CQStochasticExplorationPolicy(CActionSet *actions, CActionDistribution *distribution, CAbstractQFunction *qFunctoin, CAbstractQFunction *explorationFunction, rlt_real alpha) :CQStochasticPolicy(actions, distribution, qFunctoin)
{
this->explorationFunction = explorationFunction;
addParameter("ExplorationFactor", alpha);
addParameter("AttentionFactor", 0.5);
explorationValues = new rlt_real[actions->size()];
}
CQStochasticExplorationPolicy::~CQStochasticExplorationPolicy()
{
delete explorationValues;
}
void CQStochasticExplorationPolicy::getActionValues(CStateCollection *state, CActionSet *availableActions, rlt_real *actionValues, CActionDataSet *actionDataSet)
{
for (unsigned int i = 0; i < availableActions->size(); actionValues[i++] = 0.0);
qfunction->getActionValues(state, availableActions, actionValues);
for (unsigned int i = 0; i < availableActions->size(); explorationValues[i++] = 0.0);
explorationFunction->getActionValues(state, availableActions, explorationValues);
rlt_real alpha = getParameter("ExplorationFactor");
rlt_real attentionFactor = getParameter("AttentionFactor");
for (unsigned int i = 0; i < availableActions->size(); i++)
{
actionValues[i] = 2 * (attentionFactor * actionValues[i] + (1 - attentionFactor) * alpha * explorationValues[i]);
}
}
CSelectiveExplorationCalculator::CSelectiveExplorationCalculator(CQStochasticExplorationPolicy *explorationFunction)
{
attention = 0.5;
this->explorationPolicy = explorationPolicy;
addParameter("SelectiveAttentionSquashingFactor", 1.0);
}
CSelectiveExplorationCalculator::~CSelectiveExplorationCalculator()
{
}
void CSelectiveExplorationCalculator::nextStep(CStateCollection *state, CAction *action, CStateCollection *nextState)
{
rlt_real alpha = getParameter("SelectiveAttentionSquashingFactor");
rlt_real kappa = attention * explorationPolicy->getQFunction()->getValue(state, action, NULL) / explorationPolicy->getQFunction()->getMaxValue(state, explorationPolicy->getActions());
kappa -= (1 - attention) * explorationPolicy->getExplorationQFunction()->getValue(state, action);
attention = 0.8 / (1 + exp(- alpha * kappa)) + 0.1;
explorationPolicy->setParameter("SelectiveAttention", attention);
}
void CSelectiveExplorationCalculator::newEpisode()
{
attention = 0.5;
explorationPolicy->setParameter("SelectiveAttention", attention);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -