⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cvfunctionlearner.cpp

📁 强化学习算法(R-Learning)难得的珍贵资料
💻 CPP
字号:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)

//                
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "ril_debug.h"
#include "cvfunctionlearner.h"

CAdaptiveParameterFromValueCalculator::CAdaptiveParameterFromValueCalculator(CAbstractVFunction *l_vFunction, int functionKind, rlt_real param0, rlt_real paramScale, rlt_real targetMin, rlt_real targetMax) : CAdaptiveParameterBoundedValuesCalculator(functionKind, param0, paramScale, targetMin, targetMax)
{
	this->vFunction = l_vFunction;
}

CAdaptiveParameterFromValueCalculator::~CAdaptiveParameterFromValueCalculator()
{
}

void CAdaptiveParameterFromValueCalculator::nextStep(CStateCollection *oldState, CAction *action, CStateCollection *newState)
{
	targetValue = vFunction->getValue(newState);
}


CVFunctionLearner::CVFunctionLearner(CRewardFunction *rewardFunction, CAbstractVFunction *vFunction, CAbstractVETraces *eTraces) : CSemiMDPRewardListener(rewardFunction)
{
	this->vFunction = vFunction;
	this->eTraces = eTraces;

	bExternETraces = true;

	addParameter("VLearningRate", 0.2);
	addParameter("DiscountFactor", 0.95);

	addParameters(vFunction);
	addParameters(eTraces);
}

CVFunctionLearner::CVFunctionLearner(CRewardFunction *rewardFunction, CAbstractVFunction *vFunction) : CSemiMDPRewardListener(rewardFunction)
{
	this->vFunction = vFunction;
	this->eTraces = vFunction->getStandardETraces();

	bExternETraces = false;

	addParameter("VLearningRate", 0.2);
	addParameter("DiscountFactor", 0.95);


	addParameters(vFunction);
	addParameters(eTraces);
}

CVFunctionLearner::~CVFunctionLearner()
{
	if (!bExternETraces)
	{
		delete eTraces;
	}
}

rlt_real CVFunctionLearner::getLearningRate()
{
	return getParameter("VLearningRate");
}

void CVFunctionLearner::setLearningRate(rlt_real learningRate)
{
	setParameter("VLearningRate", learningRate);
}

void CVFunctionLearner::nextStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
	rlt_real td = getTemporalDifference(oldState, action, reward, nextState);
	DebugPrint('t', "TD %f\n", td);
	updateVFunction(oldState, nextState, action->getDuration(), td);
}

void CVFunctionLearner::intermediateStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
	addETraces(oldState, nextState, action->getDuration());
	vFunction->updateValue(oldState, getTemporalDifference(oldState, action, reward, nextState) * getLearningRate());
}


void CVFunctionLearner::updateVFunction(CStateCollection *oldState, CStateCollection *newState, int duration, rlt_real td)
{
	eTraces->updateETraces(duration);
	addETraces(oldState, newState, duration);
	eTraces->updateVFunction(td * getLearningRate());
}

void CVFunctionLearner::addETraces(CStateCollection *oldState, CStateCollection *newState, int duration)
{
	eTraces->addETrace(oldState);
}

CAbstractVETraces *CVFunctionLearner::getVETraces()
{
	return eTraces;
}

rlt_real CVFunctionLearner::getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
	rlt_real oldQValue = vFunction->getValue(oldState);
	rlt_real newQValue = vFunction->getValue(nextState);

	DebugPrint('t',"VFunctionLearner: oldQ %f,newQ %f, reward %f, ",oldQValue, newQValue, reward);

	rlt_real temporalDifference = reward + pow(getParameter("DiscountFactor"), action->getDuration()) * newQValue - oldQValue;
	
	sendErrorToListeners(temporalDifference, oldState, action, NULL);
	
	return temporalDifference;
}

CAbstractVFunction *CVFunctionLearner::getVFunction()
{
	return vFunction;
}

void CVFunctionLearner::newEpisode()
{
	eTraces->resetETraces();
}


CVFunctionGradientLearner::CVFunctionGradientLearner(CRewardFunction *rewardFunction, CGradientVFunction *vFunction, CResidualFunction *residual, CResidualGradientFunction *residualGradientFunction) : CVFunctionLearner(rewardFunction, vFunction)
{
	this->residual = residual;
	this->residualGradientFunction = residualGradientFunction;

	addParameters(residual);
	addParameters(residualGradientFunction);

	this->gradientVFunction = vFunction;
	this->oldGradient = new CFeatureList();
	this->newGradient = new CFeatureList();
	this->residualGradient = new CFeatureList();
	this->gradientETraces = dynamic_cast<CGradientVETraces *>(eTraces);
}

CVFunctionGradientLearner::~CVFunctionGradientLearner()
{
	delete oldGradient;
	delete newGradient;
	delete residualGradient;
}

void CVFunctionGradientLearner::addETraces(CStateCollection *oldState, CStateCollection *newState, int duration)
{
	oldGradient->clear();
	newGradient->clear();
	residualGradient->clear();

	gradientVFunction->getGradient(oldState, oldGradient);
	gradientVFunction->getGradient(newState, newGradient);

	residualGradientFunction->getResidualGradient(oldGradient, newGradient, duration, residualGradient);

	gradientETraces->addGradientETrace(residualGradient, - 1.0 );
}


rlt_real CVFunctionGradientLearner::getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
	rlt_real temporalDifference = residual->getResidual(vFunction->getValue(oldState), reward, action->getDuration(), vFunction->getValue(nextState));
	sendErrorToListeners(temporalDifference, oldState, action, NULL);
	return temporalDifference;
}

CVFunctionResidualLearner::CVFunctionResidualLearner(CRewardFunction *rewardFunction, CGradientVFunction *vFunction, CResidualFunction *residual, CResidualGradientFunction *residualGradient, CAbstractBetaCalculator *betaCalc) : CVFunctionGradientLearner(rewardFunction, vFunction, residual, residualGradient)
{
	this->betaCalculator = betaCalc;
	this->residualETraces = new CGradientVETraces(gradientVFunction);
	
	this->directGradientTraces = new CGradientVETraces(gradientVFunction);
	this->residualGradientTraces = new CGradientVETraces(gradientVFunction);

	addParameters(betaCalc);
	addParameters(residualETraces);

	addParameters(directGradientTraces, "Gradient");
	addParameters(residualGradientTraces, "Gradient");


	setParameter("GradientReplacingETraces", 0.0);
}

CVFunctionResidualLearner::~CVFunctionResidualLearner()
{
	delete residualETraces;
	delete residualGradientTraces;
	delete directGradientTraces;
}

void CVFunctionResidualLearner::newEpisode()
{
	CVFunctionGradientLearner::newEpisode();
	residualETraces->resetETraces();
	residualGradientTraces->resetETraces();
	directGradientTraces->resetETraces();
}

void CVFunctionResidualLearner::addETraces(CStateCollection *oldState, CStateCollection *newState, int duration, rlt_real td)
{
	oldGradient->clear();
	newGradient->clear();
	residualGradient->clear();

	gradientVFunction->getGradient(oldState, oldGradient);
	gradientVFunction->getGradient(newState, newGradient);

	residualGradientFunction->getResidualGradient(oldGradient, newGradient, duration, residualGradient);

	if (DebugIsEnabled('v'))
	{
		DebugPrint('v', "Residual Gradient: ");
		residualGradient->saveASCII(DebugGetFileHandle('v'));
		DebugPrint('v', "\n");
	}

	directGradientTraces->addGradientETrace(oldGradient, td);
	residualGradientTraces->addGradientETrace(residualGradient, - td);

	gradientETraces->addGradientETrace(oldGradient, 1.0);
	residualETraces->addGradientETrace(residualGradient, -1.0);
}


void CVFunctionResidualLearner::updateVFunction(CStateCollection *oldState, CStateCollection *newState, int duration, rlt_real td)
{
	gradientETraces->updateETraces(duration);
	residualETraces->updateETraces(duration);

	residualGradientTraces->updateETraces(1);
	directGradientTraces->updateETraces(1);

	rlt_real beta = betaCalculator->getBeta(directGradientTraces->getGradientETraces(), residualGradientTraces->getGradientETraces());

	addETraces(oldState, newState, duration, td);


	rlt_real learningRate = getLearningRate();
	gradientETraces->updateVFunction(td * learningRate * (1 - beta));
	residualETraces->updateVFunction(td * learningRate * beta);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -