📄 rundemo.m
字号:
clear all;
if exist('GaussianMixture')~=2
pathtool;
error('the directory containing the Cluster program must be added to the search path');
end
disp('generating data...');
mkdata;
clear all;
traindata1 = load('TrainingData1');
traindata2 = load('TrainingData2');
testdata = load('TestingData');
input('press <Enter> to continue...');
disp(' ');
% [mtrs, omtr] = GaussianMixture(pixels, initK, finalK, verbose)
% - pixels is a NxM matrix, containing N training vectors, each of M-dimensional
% - start with initK=20 initial clusters
% - finalK=0 means estimate the optimal order
% - verbose=true displays clustering information
% - mtrs is an array of structures, each containing the cluster parameters of the
% mixture of a particular order
% - omtr is a structure containing the cluster parameters of the mixture with
% the estimated optimal order
disp('clustering class 1...');
[mtrs,class1] = GaussianMixture(traindata1, 20, 0, false);
disp(sprintf('\toptimal order K*: %d', class1.K));
for i=1:class1.K
disp(sprintf('\tCluster %d:', i));
disp(sprintf('\t\tpi: %f', class1.cluster(i).pb));
disp([sprintf('\t\tmean: '), mat2str(class1.cluster(i).mu',6)]);
disp([sprintf('\t\tcovar: '), mat2str(class1.cluster(i).R,6)]);
end
input('press <Enter> to continue...');
disp(' ');
disp('clustering class 2...');
[mtrs,class2] = GaussianMixture(traindata2, 20, 0, false);
disp(sprintf('\toptimal order K*: %d', class2.K));
for i=1:class2.K
disp(sprintf('\tCluster %d:', i));
disp(sprintf('\t\tpi: %f', class2.cluster(i).pb));
disp([sprintf('\t\tmean: '), mat2str(class2.cluster(i).mu',6)]);
disp([sprintf('\t\tcovar: '), mat2str(class2.cluster(i).R,6)]);
end
input('press <Enter> to continue...');
disp(' ');
disp('performing maximum likelihood classification...');
disp('for each test vector, the following calculates the log-likelihood given each of the two classes, and classify');
disp('the first half of the samples are generated from class 1, the remaining half from class 2');
disp(' ');
likelihood=zeros(size(testdata,1), 2);
likelihood(:,1) = GMLikelihood(class1, testdata);
likelihood(:,2) = GMLikelihood(class2, testdata);
class=ones(size(testdata,1),1);
class(find(likelihood(:,1)<=likelihood(:,2)))=2;
for n=1:size(testdata,1)
disp([mat2str(testdata(n,:),4), sprintf('\tlikelihood: '), mat2str(likelihood(n,:),4), sprintf('\tclass: %d', class(n))]);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -