📄 macroblock.c
字号:
currSE->mapping = levrun_linfo_intra;
else
{
currSE->context = 0; // for choosing context model
currSE->writing = writeRunLevel2Buffer_CABAC;
}
if (k == kbeg)
{
currSE->type = SE_LUM_DC_INTRA; // element is of type DC
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[SE_LUM_DC_INTRA]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
}
else
{
currSE->type = SE_LUM_AC_INTRA; // element is of type AC
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[SE_LUM_AC_INTRA]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
}
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_Y_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "Luma dbl(%2d,%2d) level=%3d Run=%2d",kk,k,level,run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
}
}
else // single scan
{
level=1; // get inside loop
for(k=0;k<=16 && level !=0; k++)
{
level = currSE->value1 = img->cof[i][j][k][0][SINGLE_SCAN]; // level
run = currSE->value2 = img->cof[i][j][k][1][SINGLE_SCAN]; // run
if (input->symbol_mode == UVLC)
currSE->mapping = levrun_linfo_inter;
else
currSE->writing = writeRunLevel2Buffer_CABAC;
if (k == 0)
{
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
{
currSE->context = 2; // for choosing context model
currSE->type = SE_LUM_DC_INTRA;
}
else
{
currSE->context = 1; // for choosing context model
currSE->type = SE_LUM_DC_INTER;
}
}
else
{
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
{
currSE->context = 2; // for choosing context model
currSE->type = SE_LUM_AC_INTRA;
}
else
{
currSE->context = 1; // for choosing context model
currSE->type = SE_LUM_AC_INTER;
}
}
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[currSE->type]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_Y_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "Luma sng(%2d) level =%3d run =%2d", k, level,run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
}
return no_bits;
}
int
writeMB_bits_for_16x16_luma ()
{
int no_bits = 0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
SyntaxElement *currSE = &img->MB_SyntaxElements[currMB->currSEnr];
int *bitCount = currMB->bitcounter;
Slice *currSlice = img->currentSlice;
DataPartition *dataPart;
int *partMap = assignSE2partition[input->partition_mode];
int level, run;
int i, j, k, mb_x, mb_y;
// DC coeffs
level=1; // get inside loop
for (k=0;k<=16 && level !=0;k++)
{
level = currSE->value1 = img->cof[0][0][k][0][1]; // level
run = currSE->value2 = img->cof[0][0][k][1][1]; // run
if (input->symbol_mode == UVLC)
currSE->mapping = levrun_linfo_inter;
else
{
currSE->context = 3; // for choosing context model
currSE->writing = writeRunLevel2Buffer_CABAC;
}
currSE->type = SE_LUM_DC_INTRA; // element is of type DC
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[currSE->type]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_Y_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "DC luma 16x16 sng(%2d) level =%3d run =%2d", k, level, run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
// AC coeffs
if (img->kac==1)
{
for (mb_y=0; mb_y < 4; mb_y += 2)
{
for (mb_x=0; mb_x < 4; mb_x += 2)
{
for (j=mb_y; j < mb_y+2; j++)
{
for (i=mb_x; i < mb_x+2; i++)
{
level=1; // get inside loop
for (k=0;k<16 && level !=0;k++)
{
level = currSE->value1 = img->cof[i][j][k][0][SINGLE_SCAN]; // level
run = currSE->value2 = img->cof[i][j][k][1][SINGLE_SCAN]; // run
if (input->symbol_mode == UVLC)
currSE->mapping = levrun_linfo_inter;
else
{
currSE->context = 4; // for choosing context model
currSE->writing = writeRunLevel2Buffer_CABAC;
}
currSE->type = SE_LUM_AC_INTRA; // element is of type AC
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[currSE->type]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_Y_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "AC luma 16x16 sng(%2d) level =%3d run =%2d", k, level, run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
}
}
}
}
}
return no_bits;
}
int
writeMB_bits_for_DC_chroma (int filtering)
{
int no_bits = 0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
SyntaxElement *currSE = &img->MB_SyntaxElements[currMB->currSEnr];
int *bitCount = currMB->bitcounter;
Slice *currSlice = img->currentSlice;
DataPartition *dataPart;
int *partMap = assignSE2partition[input->partition_mode];
int cbp = img->mb_data [img->current_mb_nr].cbp;
int level, run;
int k, uv;
if (cbp > 15) // check if any chroma bits in coded block pattern is set
{
for (uv=0; uv < 2; uv++)
{
level=1;
for (k=0; k < 5 && level != 0; ++k)
{
level = currSE->value1 = img->cofu[k][0][uv]; // level
run = currSE->value2 = img->cofu[k][1][uv]; // run
if (input->symbol_mode == UVLC)
currSE->mapping = levrun_linfo_c2x2;
else
currSE->writing = writeRunLevel2Buffer_CABAC;
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
{
currSE->context = 6; // for choosing context model
currSE->type = SE_CHR_DC_INTRA;
}
else
{
currSE->context = 5; // for choosing context model
currSE->type = SE_CHR_DC_INTER;
}
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[currSE->type]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_UV_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "2x2 DC Chroma %2d: level =%3d run =%2d",k, level, run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
}
}
return no_bits;
}
int
writeMB_bits_for_AC_chroma (int filtering)
{
int no_bits = 0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
SyntaxElement *currSE = &img->MB_SyntaxElements[currMB->currSEnr];
int *bitCount = currMB->bitcounter;
Slice *currSlice = img->currentSlice;
DataPartition *dataPart;
int *partMap = assignSE2partition[input->partition_mode];
int cbp = img->mb_data [img->current_mb_nr].cbp;
int level, run;
int i, j, k, mb_x, mb_y, i1, ii, j1, jj;
if (cbp >> 4 == 2) // check if chroma bits in coded block pattern = 10b
{
for (mb_y=4; mb_y < 6; mb_y += 2)
{
for (mb_x=0; mb_x < 4; mb_x += 2)
{
for (j=mb_y; j < mb_y+2; j++)
{
jj=j/2;
j1=j-4;
for (i=mb_x; i < mb_x+2; i++)
{
ii=i/2;
i1=i%2;
level=1;
for (k=0; k < 16 && level != 0; k++)
{
level = currSE->value1 = img->cof[i][j][k][0][0]; // level
run = currSE->value2 = img->cof[i][j][k][1][0]; // run
if (input->symbol_mode == UVLC)
currSE->mapping = levrun_linfo_inter;
else
currSE->writing = writeRunLevel2Buffer_CABAC;
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
{
currSE->context = 8; // for choosing context model
currSE->type = SE_CHR_AC_INTRA;
}
else
{
currSE->context = 7; // for choosing context model
currSE->type = SE_CHR_AC_INTER;
}
// choose the appropriate data partition
if (img->type != B_IMG)
dataPart = &(currSlice->partArr[partMap[currSE->type]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
dataPart->writeSyntaxElement (currSE, dataPart);
bitCount[BITS_COEFF_UV_MB]+=currSE->len;
no_bits +=currSE->len;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "AC Chroma %2d: level =%3d run =%2d",k, level, run);
#endif
// proceed to next SE
currSE++;
currMB->currSEnr++;
}
}
}
}
}
}
return no_bits;
}
/*!
************************************************************************
* \brief
* Find best 16x16 based intra mode
*
* \par Input:
* Image parameters, pointer to best 16x16 intra mode
*
* \par Output:
* best 16x16 based SAD
************************************************************************/
int find_sad2(int *intra_mode)
{
int current_intra_sad_2,best_intra_sad2;
int M1[16][16],M0[4][4][4][4],M3[4],M4[4][4];
int i,j,k;
int ii,jj;
best_intra_sad2=MAX_VALUE;
for (k=0;k<4;k++)
{
int mb_nr = img->current_mb_nr;
int mb_width = img->width/16;
int mb_available_up = (img->mb_y == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-mb_width].slice_nr);
int mb_available_left = (img->mb_x == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-1].slice_nr);
if(input->UseConstrainedIntraPred)
{
if (mb_available_up && (img->intra_mb[mb_nr-mb_width] ==0))
mb_available_up = 0;
if (mb_available_left && (img->intra_mb[mb_nr-1] ==0))
mb_available_left = 0;
}
//check if there are neighbours to predict from
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -