📄 b_frame.c
字号:
/*
***********************************************************************
* COPYRIGHT AND WARRANTY INFORMATION
*
* Copyright 2001, International Telecommunications Union, Geneva
*
* DISCLAIMER OF WARRANTY
*
* These software programs are available to the user without any
* license fee or royalty on an "as is" basis. The ITU disclaims
* any and all warranties, whether express, implied, or
* statutory, including any implied warranties of merchantability
* or of fitness for a particular purpose. In no event shall the
* contributor or the ITU be liable for any incidental, punitive, or
* consequential damages of any kind whatsoever arising from the
* use of these programs.
*
* This disclaimer of warranty extends to the user of these programs
* and user's customers, employees, agents, transferees, successors,
* and assigns.
*
* The ITU does not represent or warrant that the programs furnished
* hereunder are free of infringement of any third-party patents.
* Commercial implementations of ITU-T Recommendations, including
* shareware, may be subject to royalty fees to patent holders.
* Information regarding the ITU-T patent policy is available from
* the ITU Web site at http://www.itu.int.
*
* THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.
************************************************************************
*/
/*!
*************************************************************************************
* \file b_frame.c
*
* \brief
* B picture decoding
*
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* - Byeong-Moon Jeon <jeonbm@lge.com>
* - Yoon-Seong Soh <yunsung@lge.com>
* - Thomas Wedi <wedi@tnt.uni-hannover.de>
*************************************************************************************
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "global.h"
#include "mbuffer.h"
#include "b_frame.h"
#include "elements.h"
#define POS 0
/*!
************************************************************************
* \brief
* Write previous decoded P frame to output file
************************************************************************
*/
void write_prev_Pframe(struct img_par *img, FILE *p_out)
{
int i,j;
for(i=0;i<img->height;i++)
for(j=0;j<img->width;j++)
fputc(imgY_prev[i][j],p_out);
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
fputc(imgUV_prev[0][i][j],p_out);
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
fputc(imgUV_prev[1][i][j],p_out);
}
/*!
************************************************************************
* \brief
* Copy decoded P frame to temporary image array
************************************************************************
*/
void copy_Pframe(struct img_par *img, int postfilter)
{
int i,j;
/*
* the mmin, mmax macros are taken out, because it makes no sense due to limited range of data type
*/
if(postfilter)
{
for(i=0;i<img->height;i++)
for(j=0;j<img->width;j++)
{
imgY_prev[i][j] = imgY_pf[i][j];
}
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
{
imgUV_prev[0][i][j] = imgUV_pf[0][i][j];
}
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
{
imgUV_prev[1][i][j] = imgUV_pf[1][i][j];
}
}
else
{
for(i=0;i<img->height;i++)
for(j=0;j<img->width;j++)
{
imgY_prev[i][j] = imgY[i][j];
}
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
{
imgUV_prev[0][i][j] = imgUV[0][i][j];
}
for(i=0;i<img->height_cr;i++)
for(j=0;j<img->width_cr;j++)
{
imgUV_prev[1][i][j] = imgUV[1][i][j];
}
}
}
/*!
************************************************************************
* \brief
* init macroblock B frames
************************************************************************
*/
void init_macroblock_Bframe(struct img_par *img)
{
int i,j;
int fw_predframe_no=0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
currMB->ref_frame = 0;
currMB->predframe_no = 0;
// reset vectors and pred. modes
for (i=0;i<BLOCK_SIZE;i++)
{
for(j=0;j<BLOCK_SIZE;j++)
{
img->fw_mv[img->block_x+i+4][img->block_y+j][0]=img->fw_mv[img->block_x+i+4][img->block_y+j][1]=0;
img->bw_mv[img->block_x+i+4][img->block_y+j][0]=img->bw_mv[img->block_x+i+4][img->block_y+j][1]=0;
img->dfMV[img->block_x+i+4][img->block_y+j][0]=img->dfMV[img->block_x+i+4][img->block_y+j][1]=0;
img->dbMV[img->block_x+i+4][img->block_y+j][0]=img->dbMV[img->block_x+i+4][img->block_y+j][1]=0;
img->ipredmode[img->block_x+i+1][img->block_y+j+1] = 0;
}
}
// Set the reference frame information for motion vector prediction
if (img->imod==INTRA_MB_OLD || img->imod==INTRA_MB_NEW)
{
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] =
img->bw_refFrArr[img->block_y+j][img->block_x+i] = -1;
}
}
}
else if(img->imod == B_Forward)
{
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] = fw_predframe_no; // previous P
img->bw_refFrArr[img->block_y+j][img->block_x+i] = -1;
}
}
}
else if(img->imod == B_Backward)
{
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] = -1;
img->bw_refFrArr[img->block_y+j][img->block_x+i] = 0; // next P
}
}
}
else if(img->imod == B_Bidirect)
{
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] = fw_predframe_no; // previous P
img->bw_refFrArr[img->block_y+j][img->block_x+i] = 0; // next P
}
}
}
else if(img->imod == B_Direct)
{
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] = -1; // previous P
img->bw_refFrArr[img->block_y+j][img->block_x+i] = -1; // next P
}
}
}
}
/*!
************************************************************************
* \brief
* Get for a given MB of a B picture the reference frame
* parameter and the motion vectors from the NAL
*
************************************************************************
*/
void readMotionInfoFromNAL_Bframe(struct img_par *img,struct inp_par *inp)
{
int i,j,ii,jj,ie,j4,i4,k,pred_vec=0;
int vec;
int ref_frame;
int fw_predframe_no=0, bw_predframe_no; // frame number which current MB is predicted from
int fw_blocktype=0, bw_blocktype=0, blocktype=0;
int l,m;
// keep track of neighbouring macroblocks available for prediction
int mb_nr = img->current_mb_nr;
int mb_width = img->width/16;
int mb_available_up = (img->mb_y == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-mb_width].slice_nr);
int mb_available_left = (img->mb_x == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-1].slice_nr);
int mb_available_upleft = (img->mb_x == 0 || img->mb_y == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-mb_width-1].slice_nr);
int mb_available_upright = (img->mb_x >= mb_width-1 || img->mb_y == 0) ? 0 : (img->mb_data[mb_nr].slice_nr == img->mb_data[mb_nr-mb_width+1].slice_nr);
// keep track of neighbouring blocks available for motion vector prediction
int block_available_up, block_available_left, block_available_upright, block_available_upleft;
int mv_a, mv_b, mv_c, mv_d;
int mvPredType, rFrameL, rFrameU, rFrameUR;
SyntaxElement THEcurrSE;
SyntaxElement *currSE = &THEcurrSE;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
Slice *currSlice = img->currentSlice;
DataPartition *dp;
int *partMap = assignSE2partition[currSlice->dp_mode];
bw_predframe_no=0;
// /////////////////////////////////////////////////////////////
// find fw_predfame_no
// /////////////////////////////////////////////////////////////
if(img->imod==B_Forward || img->imod==B_Bidirect)
{
if(img->type==B_IMG_MULT)
{
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "B_fw_Reference frame no ");
#endif
currSE->type = SE_REFFRAME;
dp = &(currSlice->partArr[partMap[SE_BFRAME]]);
if (inp->symbol_mode == UVLC)
currSE->mapping = linfo;
else
currSE->reading = readRefFrameFromBuffer_CABAC;
dp->readSyntaxElement( currSE, img, inp, dp);
fw_predframe_no = currSE->value1;
if (fw_predframe_no > img->buf_cycle)
{
set_ec_flag(SE_REFFRAME);
fw_predframe_no = 1;
}
ref_frame=fw_predframe_no;
/* if (ref_frame > img->number)
{
ref_frame = 0;
}*/
currMB->predframe_no = fw_predframe_no;
currMB->ref_frame = img->ref_frame = ref_frame;
// Update the reference frame information for motion vector prediction
for (j = 0;j < BLOCK_SIZE;j++)
{
for (i = 0;i < BLOCK_SIZE;i++)
{
img->fw_refFrArr[img->block_y+j][img->block_x+i] = fw_predframe_no;
}
}
}
else
fw_predframe_no = currMB->predframe_no;
}
// /////////////////////////////////////////////////////////////
// find blk_size
// /////////////////////////////////////////////////////////////
if(img->imod==B_Bidirect)
{
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "B_bidiret_fw_blk");
#endif
currSE->type = SE_BFRAME;
dp = &(currSlice->partArr[partMap[SE_BFRAME]]);
if (inp->symbol_mode == UVLC)
currSE->mapping = linfo;
else
currSE->reading = readBiDirBlkSize2Buffer_CABAC;
dp->readSyntaxElement( currSE, img, inp, dp);
fw_blocktype = currSE->value1+1;
#if TRACE
snprintf(currSE->tracestring, TRACESTRING_SIZE, "B_bidiret_bw_blk");
#endif
currSE->type = SE_BFRAME;
dp = &(currSlice->partArr[partMap[SE_BFRAME]]);
if (inp->symbol_mode == UVLC)
currSE->mapping = linfo;
else
currSE->reading = readBiDirBlkSize2Buffer_CABAC;
dp->readSyntaxElement( currSE, img, inp, dp);
bw_blocktype = currSE->value1+1;
}
// /////////////////////////////////////////////////////////////
// find MVDFW
// /////////////////////////////////////////////////////////////
if(img->imod==B_Forward || img->imod==B_Bidirect)
{
// forward : note realtion between blocktype and img->mb_mode
// bidirect : after reading fw_blk_size, fw_pmv is obtained
if(img->mb_mode==1)
blocktype=1;
else if(img->mb_mode>3)
blocktype=img->mb_mode/2;
else if(img->mb_mode==3)
blocktype=fw_blocktype;
img->fw_blc_size_h = BLOCK_STEP[blocktype][0]*4;
img->fw_blc_size_v = BLOCK_STEP[blocktype][1]*4;
ie=4-BLOCK_STEP[blocktype][0];
for(j=0;j<4;j=j+BLOCK_STEP[blocktype][1]) // Y position in 4-pel resolution
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -