📄 macroblock.c
字号:
/*
***********************************************************************
* COPYRIGHT AND WARRANTY INFORMATION
*
* Copyright 2001, International Telecommunications Union, Geneva
*
* DISCLAIMER OF WARRANTY
*
* These software programs are available to the user without any
* license fee or royalty on an "as is" basis. The ITU disclaims
* any and all warranties, whether express, implied, or
* statutory, including any implied warranties of merchantability
* or of fitness for a particular purpose. In no event shall the
* contributor or the ITU be liable for any incidental, punitive, or
* consequential damages of any kind whatsoever arising from the
* use of these programs.
*
* This disclaimer of warranty extends to the user of these programs
* and user's customers, employees, agents, transferees, successors,
* and assigns.
*
* The ITU does not represent or warrant that the programs furnished
* hereunder are free of infringement of any third-party patents.
* Commercial implementations of ITU-T Recommendations, including
* shareware, may be subject to royalty fees to patent holders.
* Information regarding the ITU-T patent policy is available from
* the ITU Web site at http://www.itu.int.
*
* THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.
************************************************************************
*/
/*!
***********************************************************************
* \file macroblock.c
*
* \brief
* Decode a Macroblock
*
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* - Inge Lille-Lang鴜 <inge.lille-langoy@telenor.com>
* - Rickard Sjoberg <rickard.sjoberg@era.ericsson.se>
* - Jani Lainema <jani.lainema@nokia.com>
* - Sebastian Purreiter <sebastian.purreiter@mch.siemens.de>
* - Thomas Wedi <wedi@tnt.uni-hannover.de>
* - Detlev Marpe <marpe@hhi.de>
* - Gabi Blaettermann <blaetter@hhi.de>
* - Ye-Kui Wang <wangy@cs.tut.fi>
***********************************************************************
*/
#include "contributors.h"
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "global.h"
#include "mbuffer.h"
#include "elements.h"
#include "macroblock.h"
/*!
************************************************************************
* \brief
* Checks the availability of neighboring macroblocks of
* the current macroblock for prediction and context determination;
* marks the unavailable MBs for intra prediction in the
* ipredmode-array by -1. Only neighboring MBs in the causal
* past of the current MB are checked.
************************************************************************
*/
void CheckAvailabilityOfNeighbors(struct img_par *img)
{
int i,j;
const int mb_width = img->width/MB_BLOCK_SIZE;
const int mb_nr = img->current_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
// mark all neighbors as unavailable
for (i=0; i<3; i++)
for (j=0; j<3; j++)
img->mb_data[mb_nr].mb_available[i][j]=NULL;
img->mb_data[mb_nr].mb_available[1][1]=currMB; // current MB
// Check MB to the left
if(img->pix_x >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-1].slice_nr;
if(img->UseConstrainedIntraPred)
remove_prediction = (remove_prediction || img->intra_mb[mb_nr-1] ==0);
if(remove_prediction)
{
img->ipredmode[img->block_x][img->block_y+1] = -1;
img->ipredmode[img->block_x][img->block_y+2] = -1;
img->ipredmode[img->block_x][img->block_y+3] = -1;
img->ipredmode[img->block_x][img->block_y+4] = -1;
} else
currMB->mb_available[1][0]=&(img->mb_data[mb_nr-1]);
}
// Check MB above
if(img->pix_y >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-mb_width].slice_nr;
if(img->UseConstrainedIntraPred)
remove_prediction = (remove_prediction || img->intra_mb[mb_nr-mb_width] ==0);
if(remove_prediction)
{
img->ipredmode[img->block_x+1][img->block_y] = -1;
img->ipredmode[img->block_x+2][img->block_y] = -1;
img->ipredmode[img->block_x+3][img->block_y] = -1;
img->ipredmode[img->block_x+4][img->block_y] = -1;
} else
currMB->mb_available[0][1]=&(img->mb_data[mb_nr-mb_width]);
}
// Check MB left above
if(img->pix_x >= MB_BLOCK_SIZE && img->pix_y >= MB_BLOCK_SIZE )
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width-1].slice_nr)
img->mb_data[mb_nr].mb_available[0][0]=&(img->mb_data[mb_nr-mb_width-1]);
}
// Check MB right above
if(img->pix_y >= MB_BLOCK_SIZE && img->pix_x < (img->width-MB_BLOCK_SIZE ))
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width+1].slice_nr)
currMB->mb_available[0][2]=&(img->mb_data[mb_nr-mb_width+1]);
}
}
/*!
************************************************************************
* \brief
* initializes the current macroblock
************************************************************************
*/
void start_macroblock(struct img_par *img,struct inp_par *inp)
{
int i,j,k,l;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
// WYK: Oct. 8, 2001, start ...
// The following is moved and modified from exit_macroblock(),
// to make the decoding process correct when some macroblocks are lost
/* Update coordinates of the current macroblock */
img->mb_x = (img->current_mb_nr)%(img->width/MB_BLOCK_SIZE);
img->mb_y = (img->current_mb_nr)/(img->width/MB_BLOCK_SIZE);
/* Define vertical positions */
img->block_y = img->mb_y * BLOCK_SIZE; /* luma block position */
img->pix_y = img->mb_y * MB_BLOCK_SIZE; /* luma macroblock position */
img->pix_c_y = img->mb_y * MB_BLOCK_SIZE/2; /* chroma macroblock position */
/* Define horizontal positions */
img->block_x = img->mb_x * BLOCK_SIZE; /* luma block position */
img->pix_x = img->mb_x * MB_BLOCK_SIZE; /* luma pixel position */
img->pix_c_x = img->mb_x * MB_BLOCK_SIZE/2; /* chroma pixel position */
//WYK: Oct. 8, 2001, ... end
// Save the slice number of this macroblock. When the macroblock below
// is coded it will use this to decide if prediction for above is possible
currMB->slice_nr = img->current_slice_nr;
// If MB is next to a slice boundary, mark neighboring blocks unavailable for prediction
CheckAvailabilityOfNeighbors(img);
// Reset syntax element entries in MB struct
currMB->mb_type = 0;
currMB->ref_frame = 0;
currMB->predframe_no = 0;
currMB->delta_quant = 0;
currMB->cbp = 0;
currMB->cbp_blk = 0;
for (l=0; l < 2; l++)
for (j=0; j < BLOCK_MULTIPLE; j++)
for (i=0; i < BLOCK_MULTIPLE; i++)
for (k=0; k < 2; k++)
currMB->mvd[l][j][i][k] = 0;
for (i=0; i < (BLOCK_MULTIPLE*BLOCK_MULTIPLE); i++)
currMB->intra_pred_modes[i] = 0;
}
/*!
************************************************************************
* \brief
* set coordinates of the next macroblock
* check end_of_slice condition (have to implement)
************************************************************************
*/
int exit_macroblock(struct img_par *img,struct inp_par *inp)
{
const int number_mb_per_row = img->width / MB_BLOCK_SIZE ;
Slice *currSlice = img->currentSlice;
// Update coordinates of the next macroblock
img->mb_x++;
if (img->mb_x == number_mb_per_row) // next row of MBs
{
img->mb_x = 0; // start processing of next row
img->mb_y++;
}
img->current_mb_nr++;
// Define vertical positions
img->block_y = img->mb_y * BLOCK_SIZE; // luma block position
img->pix_y = img->mb_y * MB_BLOCK_SIZE; // luma macroblock position
img->pix_c_y = img->mb_y * MB_BLOCK_SIZE/2; // chroma macroblock position
// Define horizontal positions
img->block_x = img->mb_x * BLOCK_SIZE; // luma block position
img->pix_x = img->mb_x * MB_BLOCK_SIZE; // luma pixel position
img->pix_c_x = img->mb_x * MB_BLOCK_SIZE/2; // chroma pixel position
if (img->current_mb_nr == img->max_mb_nr)
{
if (currSlice->next_header != EOS)
currSlice->next_header = SOP;
return TRUE;
}
// ask for last mb in the slice UVLC
else
{
if(nal_startcode_follows(img, inp) == FALSE)
return FALSE;
if(img->type == INTRA_IMG || img->type == SP_IMG_1|| img->type == SP_IMG_MULT || inp->symbol_mode == CABAC)
return TRUE;
if(img->cod_counter<=0)
return TRUE;
return FALSE;
}
}
/*!
************************************************************************
* \brief
* Interpret the mb mode for P-Frames
************************************************************************
*/
void interpret_mb_mode_P(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
currMB->intraOrInter = INTER_MB ;
if (img->mb_mode == INTRA_MB) // 4x4 intra
{
currMB->intraOrInter = INTRA_MB_4x4 ;
currMB->mb_imode = img->imod = INTRA_MB_OLD ;
}
if (img->mb_mode > INTRA_MB) // 16x16 intra
{
currMB->intraOrInter = INTRA_MB_16x16 ;
img->imod = currMB->mb_imode = INTRA_MB_NEW; // mod0=img->mb_mode-1;kmod=mod0 & 3;cbp = ICBPTAB[mod0/4];
currMB->intra_pred_modes[0] = (img->mb_mode - INTRA_MB-1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - INTRA_MB-1)>>2];
}
if (img->mb_mode < INTRA_MB) // inter prediction mode (block shape)
img->imod = currMB->mb_imode = INTRA_MB_INTER; // intra in inter frame
}
/*!
************************************************************************
* \brief
* Interpret the mb mode for I-Frames
************************************************************************
*/
void interpret_mb_mode_I(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
if (img->mb_mode == 0)
{
currMB->intraOrInter = INTRA_MB_4x4 ;
img->imod = currMB->mb_imode = INTRA_MB_OLD; // 4x4 intra
}
else
{
currMB->intraOrInter = INTRA_MB_16x16 ;
img->imod = currMB->mb_imode = INTRA_MB_NEW; // 16x16 intra */ /* mod0=img->mb_mode-1;kmod=mod0 & 3;cbp = ICBPTAB[mod0/4];
currMB->intra_pred_modes[0] = (img->mb_mode - 1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - 1)>>2];
}
}
/*!
************************************************************************
* \brief
* Interpret the mb mode for B-Frames
************************************************************************
*/
void interpret_mb_mode_B(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
currMB->intraOrInter = INTER_MB ;
if (img->mb_mode == INTRA_MB_B) // 4x4 intra
{
currMB->intraOrInter = INTRA_MB_4x4 ;
img->imod = currMB->mb_imode = INTRA_MB_OLD;
}
if (img->mb_mode > INTRA_MB_B) // 16x16 intra
{
currMB->intraOrInter = INTRA_MB_16x16 ;
img->imod = currMB->mb_imode = INTRA_MB_NEW;
currMB->intra_pred_modes[0] = (img->mb_mode - INTRA_MB_B-1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - INTRA_MB_B-1)>>2];
}
if (img->mb_mode < INTRA_MB_B)
{
if(img->mb_mode == 0)
img->imod = currMB->mb_imode = B_Direct;
else if(img->mb_mode == 3)
img->imod = currMB->mb_imode = B_Bidirect;
else if(img->mb_mode==1 || (img->mb_mode>3 && img->mb_mode%2==0))
img->imod = currMB->mb_imode = B_Forward;
else if(img->mb_mode==2 || (img->mb_mode>4 && img->mb_mode%2==1))
img->imod = currMB->mb_imode = B_Backward;
}
}
/*!
************************************************************************
* \brief
* init macroblock I and P frames
************************************************************************
*/
void init_macroblock(struct img_par *img)
{
int i,j;
int predframe_no;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
img->mv[img->block_x+4][img->block_y][2]=img->number;
for (i=0;i<BLOCK_SIZE;i++)
{ // reset vectors and pred. modes
for(j=0;j<BLOCK_SIZE;j++)
{
img->mv[img->block_x+i+4][img->block_y+j][0] = 0;
img->mv[img->block_x+i+4][img->block_y+j][1] = 0;
img->ipredmode[img->block_x+i+1][img->block_y+j+1] = 0;
}
}
currMB->ref_frame = 0;
currMB->predframe_no = predframe_no = 0;// g.b.1;
// Set the reference frame information for motion vector prediction
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
for (j = 0;j < BLOCK_SIZE;j++)
for (i = 0;i < BLOCK_SIZE;i++)
refFrArr[img->block_y+j][img->block_x+i] = -1;
else
for (j = 0;j < BLOCK_SIZE;j++)
for (i = 0;i < BLOCK_SIZE;i++)
refFrArr[img->block_y+j][img->block_x+i] = predframe_no;
}
/*!
************************************************************************
* \brief
* Get the syntax elements from the NAL
************************************************************************
*/
int read_one_macroblock(struct img_par *img,struct inp_par *inp)
{
int i, i1, j1;
SyntaxElement currSE;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
Slice *currSlice = img->currentSlice;
DataPartition *dP;
int *partMap = assignSE2partition[currSlice->dp_mode];
int dbl_ipred_word;
currMB->qp = img->qp ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -