📄 mkgaussian.m
字号:
% IM = mkGaussian(SIZE, COVARIANCE, MEAN, AMPLITUDE)
%
% Compute a matrix with dimensions SIZE (a [Y X] 2-vector, or a
% scalar) containing a Gaussian function, centered at pixel position
% specified by MEAN (default = (size+1)/2), with given COVARIANCE (can
% be a scalar, 2-vector, or 2x2 matrix. Default = (min(size)/6)^2),
% and AMPLITUDE. AMPLITUDE='norm' (default) will produce a
% probability-normalized function. All but the first argument are
% optional.
% Eero Simoncelli, 6/96.
function [res] = mkGaussian(sz, cov, mn, ampl)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('cov') ~= 1)
cov = (min(sz(1),sz(2))/6)^2;
end
if (exist('mn') ~= 1)
mn = (sz+1)/2;
end
if (exist('ampl') ~= 1)
ampl = 'norm';
end
%------------------------------------------------------------
[xramp,yramp] = meshgrid([1:sz(2)]-mn(2),[1:sz(1)]-mn(1));
if (sum(size(cov)) == 2) % scalar
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*cov(1));
end
e = (xramp.^2 + yramp.^2)/(-2 * cov);
elseif (sum(size(cov)) == 3) % a 2-vector
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*sqrt(cov(1)*cov(2)));
end
e = xramp.^2/(-2 * cov(2)) + yramp.^2/(-2 * cov(1));
else
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*sqrt(det(cov)));
end
cov = -inv(cov)/2;
e = cov(2,2)*xramp.^2 + (cov(1,2)+cov(2,1))*(xramp.*yramp) ...
+ cov(1,1)*yramp.^2;
end
res = ampl .* exp(e);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -