📄 tomcrypt_math.h
字号:
/** lcm @param a The first integer @param b The second integer @param c The destination for [a, b] @return CRYPT_OK on success */ int (*lcm)(void *a, void *b, void *c); /** Modular multiplication @param a The first source @param b The second source @param c The modulus @param d The destination (a*b mod c) @return CRYPT_OK on success */ int (*mulmod)(void *a, void *b, void *c, void *d); /** Modular squaring @param a The first source @param b The modulus @param c The destination (a*a mod b) @return CRYPT_OK on success */ int (*sqrmod)(void *a, void *b, void *c); /** Modular inversion @param a The value to invert @param b The modulus @param c The destination (1/a mod b) @return CRYPT_OK on success */ int (*invmod)(void *, void *, void *);/* ---- reduction ---- */ /** setup montgomery @param a The modulus @param b The destination for the reduction digit @return CRYPT_OK on success */ int (*montgomery_setup)(void *a, void **b); /** get normalization value @param a The destination for the normalization value @param b The modulus @return CRYPT_OK on success */ int (*montgomery_normalization)(void *a, void *b); /** reduce a number @param a The number [and dest] to reduce @param b The modulus @param c The value "b" from montgomery_setup() @return CRYPT_OK on success */ int (*montgomery_reduce)(void *a, void *b, void *c); /** clean up (frees memory) @param a The value "b" from montgomery_setup() @return CRYPT_OK on success */ void (*montgomery_deinit)(void *a);/* ---- exponentiation ---- */ /** Modular exponentiation @param a The base integer @param b The power (can be negative) integer @param c The modulus integer @param d The destination @return CRYPT_OK on success */ int (*exptmod)(void *a, void *b, void *c, void *d); /** Primality testing @param a The integer to test @param b The destination of the result (FP_YES if prime) @return CRYPT_OK on success */ int (*isprime)(void *a, int *b);/* ---- (optional) ecc point math ---- */ /** ECC GF(p) point multiplication (from the NIST curves) @param k The integer to multiply the point by @param G The point to multiply @param R The destination for kG @param modulus The modulus for the field @param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only) @return CRYPT_OK on success */ int (*ecc_ptmul)(void *k, ecc_point *G, ecc_point *R, void *modulus, int map); /** ECC GF(p) point addition @param P The first point @param Q The second point @param R The destination of P + Q @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp); /** ECC GF(p) point double @param P The first point @param R The destination of 2P @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp); /** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1) @param P The point to map @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success @remark The mapping can be different but keep in mind a ecc_point only has three integers (x,y,z) so if you use a different mapping you have to make it fit. */ int (*ecc_map)(ecc_point *P, void *modulus, void *mp); /** Computes kA*A + kB*B = C using Shamir's Trick @param A First point to multiply @param kA What to multiple A by @param B Second point to multiply @param kB What to multiple B by @param C [out] Destination point (can overlap with A or B @param modulus Modulus for curve @return CRYPT_OK on success */ int (*ecc_mul2add)(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus);/* ---- (optional) rsa optimized math (for internal CRT) ---- */ /** RSA Key Generation @param prng An active PRNG state @param wprng The index of the PRNG desired @param size The size of the modulus (key size) desired (octets) @param e The "e" value (public key). e==65537 is a good choice @param key [out] Destination of a newly created private key pair @return CRYPT_OK if successful, upon error all allocated ram is freed */ int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key); /** RSA exponentiation @param in The octet array representing the base @param inlen The length of the input @param out The destination (to be stored in an octet array format) @param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus) @param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA @param key The RSA key to use @return CRYPT_OK on success */ int (*rsa_me)(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key);} ltc_math_descriptor;extern ltc_math_descriptor ltc_mp;int ltc_init_multi(void **a, ...);void ltc_deinit_multi(void *a, ...);#ifdef LTM_DESCextern const ltc_math_descriptor ltm_desc;#endif#ifdef TFM_DESCextern const ltc_math_descriptor tfm_desc;#endif#ifdef GMP_DESCextern const ltc_math_descriptor gmp_desc;#endif#if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE)#define MP_DIGIT_BIT ltc_mp.bits_per_digit/* some handy macros */#define mp_init(a) ltc_mp.init(a)#define mp_init_multi ltc_init_multi#define mp_clear(a) ltc_mp.deinit(a)#define mp_clear_multi ltc_deinit_multi#define mp_init_copy(a, b) ltc_mp.init_copy(a, b)#define mp_neg(a, b) ltc_mp.neg(a, b)#define mp_copy(a, b) ltc_mp.copy(a, b)#define mp_set(a, b) ltc_mp.set_int(a, b)#define mp_set_int(a, b) ltc_mp.set_int(a, b)#define mp_get_int(a) ltc_mp.get_int(a)#define mp_get_digit(a, n) ltc_mp.get_digit(a, n)#define mp_get_digit_count(a) ltc_mp.get_digit_count(a)#define mp_cmp(a, b) ltc_mp.compare(a, b)#define mp_cmp_d(a, b) ltc_mp.compare_d(a, b)#define mp_count_bits(a) ltc_mp.count_bits(a)#define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a)#define mp_2expt(a, b) ltc_mp.twoexpt(a, b)#define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c)#define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c)#define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a)#define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b)#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c)#define mp_add(a, b, c) ltc_mp.add(a, b, c)#define mp_add_d(a, b, c) ltc_mp.addi(a, b, c)#define mp_sub(a, b, c) ltc_mp.sub(a, b, c)#define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c)#define mp_mul(a, b, c) ltc_mp.mul(a, b, c)#define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c)#define mp_sqr(a, b) ltc_mp.sqr(a, b)#define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d)#define mp_div_2(a, b) ltc_mp.div_2(a, b)#define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c)#define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c)#define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c)#define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c)#define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d)#define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c)#define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c)#define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b)#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b)#define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c)#define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a)#define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d)#define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c)#define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO)#define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO)#define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0);#define mp_tohex(a, b) mp_toradix(a, b, 16)#endif/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ *//* $Revision: 1.44 $ *//* $Date: 2007/05/12 14:32:35 $ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -