⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tomcrypt_math.h

📁 AES加密算法对socket通信过程进行加密传输
💻 H
📖 第 1 页 / 共 2 页
字号:
   /** lcm       @param  a     The first integer      @param  b     The second integer      @param  c     The destination for [a, b]      @return CRYPT_OK on success   */   int (*lcm)(void *a, void *b, void *c);   /** Modular multiplication      @param  a     The first source      @param  b     The second source       @param  c     The modulus      @param  d     The destination (a*b mod c)      @return CRYPT_OK on success   */   int (*mulmod)(void *a, void *b, void *c, void *d);   /** Modular squaring      @param  a     The first source      @param  b     The modulus      @param  c     The destination (a*a mod b)      @return CRYPT_OK on success   */   int (*sqrmod)(void *a, void *b, void *c);   /** Modular inversion      @param  a     The value to invert      @param  b     The modulus       @param  c     The destination (1/a mod b)      @return CRYPT_OK on success   */   int (*invmod)(void *, void *, void *);/* ---- reduction ---- */   /** setup montgomery       @param a  The modulus        @param b  The destination for the reduction digit        @return CRYPT_OK on success   */   int (*montgomery_setup)(void *a, void **b);   /** get normalization value        @param a   The destination for the normalization value       @param b   The modulus       @return  CRYPT_OK on success   */   int (*montgomery_normalization)(void *a, void *b);   /** reduce a number       @param a   The number [and dest] to reduce       @param b   The modulus       @param c   The value "b" from montgomery_setup()       @return CRYPT_OK on success   */   int (*montgomery_reduce)(void *a, void *b, void *c);   /** clean up  (frees memory)       @param a   The value "b" from montgomery_setup()       @return CRYPT_OK on success   */         void (*montgomery_deinit)(void *a);/* ---- exponentiation ---- */   /** Modular exponentiation       @param a    The base integer       @param b    The power (can be negative) integer       @param c    The modulus integer       @param d    The destination       @return CRYPT_OK on success   */   int (*exptmod)(void *a, void *b, void *c, void *d);   /** Primality testing       @param a     The integer to test       @param b     The destination of the result (FP_YES if prime)       @return CRYPT_OK on success   */   int (*isprime)(void *a, int *b);/* ----  (optional) ecc point math ---- */   /** ECC GF(p) point multiplication (from the NIST curves)       @param k   The integer to multiply the point by       @param G   The point to multiply       @param R   The destination for kG         @param modulus  The modulus for the field       @param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only)       @return CRYPT_OK on success   */   int (*ecc_ptmul)(void *k, ecc_point *G, ecc_point *R, void *modulus, int map);   /** ECC GF(p) point addition        @param P    The first point       @param Q    The second point       @param R    The destination of P + Q       @param modulus  The modulus       @param mp   The "b" value from montgomery_setup()       @return CRYPT_OK on success   */   int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp);   /** ECC GF(p) point double        @param P    The first point       @param R    The destination of 2P       @param modulus  The modulus       @param mp   The "b" value from montgomery_setup()       @return CRYPT_OK on success   */   int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp);   /** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1)       @param P     The point to map       @param modulus The modulus       @param mp    The "b" value from montgomery_setup()       @return CRYPT_OK on success       @remark  The mapping can be different but keep in mind a ecc_point only has three                 integers (x,y,z) so if you use a different mapping you have to make it fit.   */   int (*ecc_map)(ecc_point *P, void *modulus, void *mp);   /** Computes kA*A + kB*B = C using Shamir's Trick       @param A        First point to multiply       @param kA       What to multiple A by       @param B        Second point to multiply       @param kB       What to multiple B by       @param C        [out] Destination point (can overlap with A or B       @param modulus  Modulus for curve        @return CRYPT_OK on success   */    int (*ecc_mul2add)(ecc_point *A, void *kA,                      ecc_point *B, void *kB,                      ecc_point *C,                           void *modulus);/* ---- (optional) rsa optimized math (for internal CRT) ---- */   /** RSA Key Generation        @param prng     An active PRNG state       @param wprng    The index of the PRNG desired       @param size     The size of the modulus (key size) desired (octets)       @param e        The "e" value (public key).  e==65537 is a good choice       @param key      [out] Destination of a newly created private key pair       @return CRYPT_OK if successful, upon error all allocated ram is freed    */    int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key);      /** RSA exponentiation      @param in       The octet array representing the base      @param inlen    The length of the input      @param out      The destination (to be stored in an octet array format)      @param outlen   The length of the output buffer and the resulting size (zero padded to the size of the modulus)      @param which    PK_PUBLIC for public RSA and PK_PRIVATE for private RSA      @param key      The RSA key to use       @return CRYPT_OK on success   */   int (*rsa_me)(const unsigned char *in,   unsigned long inlen,                       unsigned char *out,  unsigned long *outlen, int which,                       rsa_key *key);} ltc_math_descriptor;extern ltc_math_descriptor ltc_mp;int ltc_init_multi(void **a, ...);void ltc_deinit_multi(void *a, ...);#ifdef LTM_DESCextern const ltc_math_descriptor ltm_desc;#endif#ifdef TFM_DESCextern const ltc_math_descriptor tfm_desc;#endif#ifdef GMP_DESCextern const ltc_math_descriptor gmp_desc;#endif#if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE)#define MP_DIGIT_BIT                 ltc_mp.bits_per_digit/* some handy macros */#define mp_init(a)                   ltc_mp.init(a)#define mp_init_multi                ltc_init_multi#define mp_clear(a)                  ltc_mp.deinit(a)#define mp_clear_multi               ltc_deinit_multi#define mp_init_copy(a, b)           ltc_mp.init_copy(a, b)#define mp_neg(a, b)                 ltc_mp.neg(a, b)#define mp_copy(a, b)                ltc_mp.copy(a, b)#define mp_set(a, b)                 ltc_mp.set_int(a, b)#define mp_set_int(a, b)             ltc_mp.set_int(a, b)#define mp_get_int(a)                ltc_mp.get_int(a)#define mp_get_digit(a, n)           ltc_mp.get_digit(a, n)#define mp_get_digit_count(a)        ltc_mp.get_digit_count(a)#define mp_cmp(a, b)                 ltc_mp.compare(a, b)#define mp_cmp_d(a, b)               ltc_mp.compare_d(a, b)#define mp_count_bits(a)             ltc_mp.count_bits(a)#define mp_cnt_lsb(a)                ltc_mp.count_lsb_bits(a)#define mp_2expt(a, b)               ltc_mp.twoexpt(a, b)#define mp_read_radix(a, b, c)       ltc_mp.read_radix(a, b, c)#define mp_toradix(a, b, c)          ltc_mp.write_radix(a, b, c)#define mp_unsigned_bin_size(a)      ltc_mp.unsigned_size(a)#define mp_to_unsigned_bin(a, b)     ltc_mp.unsigned_write(a, b)#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c)#define mp_add(a, b, c)              ltc_mp.add(a, b, c)#define mp_add_d(a, b, c)            ltc_mp.addi(a, b, c)#define mp_sub(a, b, c)              ltc_mp.sub(a, b, c)#define mp_sub_d(a, b, c)            ltc_mp.subi(a, b, c)#define mp_mul(a, b, c)              ltc_mp.mul(a, b, c)#define mp_mul_d(a, b, c)            ltc_mp.muli(a, b, c)#define mp_sqr(a, b)                 ltc_mp.sqr(a, b)#define mp_div(a, b, c, d)           ltc_mp.mpdiv(a, b, c, d)#define mp_div_2(a, b)               ltc_mp.div_2(a, b)#define mp_mod(a, b, c)              ltc_mp.mpdiv(a, b, NULL, c)#define mp_mod_d(a, b, c)            ltc_mp.modi(a, b, c)#define mp_gcd(a, b, c)              ltc_mp.gcd(a, b, c)#define mp_lcm(a, b, c)              ltc_mp.lcm(a, b, c)#define mp_mulmod(a, b, c, d)        ltc_mp.mulmod(a, b, c, d)#define mp_sqrmod(a, b, c)           ltc_mp.sqrmod(a, b, c)#define mp_invmod(a, b, c)           ltc_mp.invmod(a, b, c)#define mp_montgomery_setup(a, b)    ltc_mp.montgomery_setup(a, b)#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b)#define mp_montgomery_reduce(a, b, c)   ltc_mp.montgomery_reduce(a, b, c)#define mp_montgomery_free(a)        ltc_mp.montgomery_deinit(a)#define mp_exptmod(a,b,c,d)          ltc_mp.exptmod(a,b,c,d)#define mp_prime_is_prime(a, b, c)   ltc_mp.isprime(a, c)#define mp_iszero(a)                 (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO)#define mp_isodd(a)                  (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO)#define mp_exch(a, b)                do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0);#define mp_tohex(a, b)               mp_toradix(a, b, 16)#endif/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ *//* $Revision: 1.44 $ *//* $Date: 2007/05/12 14:32:35 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -