📄 s_tanh.c
字号:
/* @(#)s_tanh.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//*FUNCTION <<tanh>>, <<tanhf>>---hyperbolic tangentINDEXtanhINDEXtanhfANSI_SYNOPSIS #include <math.h> double tanh(double <[x]>); float tanhf(float <[x]>);TRAD_SYNOPSIS #include <math.h> double tanh(<[x]>) double <[x]>; float tanhf(<[x]>) float <[x]>;DESCRIPTION<<tanh>> computes the hyperbolic tangent ofthe argument <[x]>. Angles are specified in radians. <<tanh(<[x]>)>> is defined as . sinh(<[x]>)/cosh(<[x]>) <<tanhf>> is identical, save that it takes and returns <<float>> values.RETURNSThe hyperbolic tangent of <[x]> is returned.PORTABILITY<<tanh>> is ANSI C. <<tanhf>> is an extension.*//* Tanh(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 22.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */#include "fdlibm.h"#ifdef __STDC__static const double one=1.0, two=2.0, tiny = 1.0e-300;#elsestatic double one=1.0, two=2.0, tiny = 1.0e-300;#endif#ifdef __STDC__ double tanh(double x)#else double tanh(x) double x;#endif{#ifndef _DOUBLE_IS_32BITS double t,z; __int32_t jx,ix; /* High word of |x|. */ GET_HIGH_WORD(jx,x); ix = jx&0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) { if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ else return one/x-one; /* tanh(NaN) = NaN */ } /* |x| < 22 */ if (ix < 0x40360000) { /* |x|<22 */ if (ix<0x3c800000) /* |x|<2**-55 */ return x*(one+x); /* tanh(small) = small */ if (ix>=0x3ff00000) { /* |x|>=1 */ t = expm1(two*fabs(x)); z = one - two/(t+two); } else { t = expm1(-two*fabs(x)); z= -t/(t+two); } /* |x| > 22, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (jx>=0)? z: -z;#else /* defined (_DOUBLE_IS_32BITS) */ return (double) tanhf ((float) x);#endif /* defined (_DOUBLE_IS_32BITS) */}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -