📄 mfe_regime.m
字号:
%MFE_REGIME Illustrates Case Study 4.4.5.
%
% Type "mfe_regime" at the command line to run a script which illustrates
% Case Study 4.4.5 from [1].
%
% Reference(s):
% [1] R.Weron (2007) 'Modeling and Forecasting Electricity Loads and
% Prices: A Statistical Approach', Wiley, Chichester.
% Written by Jakub Jurdziak and Rafal Weron (2006.09.21)
% Copyright (c) 2006 by Rafal Weron
% Load Nord Pool data
Data = load('NP_daily_des.dat');
Data = Data(:,2);
% Calibrate MRS model with Gaussian spikes
[Ksi_tT, Param, P, Ksi_t1t_10, LogL] = mrs_est(Data, 'G');
% Plot results
h = figure(1);
set(h,'name','2-state MRS model with Gaussian spikes','numbertitle','off');
mrs_plot(Ksi_tT(:,2), Data);
% Calibrate MRS model with lognormal spikes
[Ksi_tT, Param, P, Ksi_t1t_10, LogL] = mrs_est(Data, 'LN');
% Plot results
h = figure(2);
set(h,'name','2-state MRS model with lognormal spikes','numbertitle','off');
mrs_plot(Ksi_tT(:,2), Data);
% Calibrate MRS model with Pareto spikes
[Ksi_tT, Param, P, Ksi_t1t_10, LogL] = mrs_est(Data, 'P');
% Plot results
h = figure(3);
set(h,'name','2-state MRS model with Pareto spikes','numbertitle','off');
mrs_plot(Ksi_tT(:,2), Data);
% Calibrate MRS model with a mean-reverting process for spikes
[Ksi_tT, Param, P, Ksi_t1t_10, LogL] = mrs_est(Data, 'MR');
% Plot results
h = figure(4);
set(h,'name','2-state MRS model with a mean-reverting process for spikes','numbertitle','off');
mrs_plot(Ksi_tT(:,2), Data);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -