⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsa.txt

📁 RSA的C程序 是一种尚未被破译的 加密算法 很有用哦
💻 TXT
📖 第 1 页 / 共 2 页
字号:
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n) = 0;
    MP_DIGITS(&e) = 0;
    MP_DIGITS(&v) = 0;
    CHECK_MPI_OK( mp_init(&n) );
    CHECK_MPI_OK( mp_init(&e) );
    CHECK_MPI_OK( mp_init(&v) );
    CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
    SECITEM_TO_MPINT(key->modulus,        &n);
    SECITEM_TO_MPINT(key->publicExponent, &e);
    /* Perform a public key operation v = m ** e mod n */
    CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
    if (mp_cmp(&v, c) != 0) {
	rv = SECFailure;
    }
cleanup:
    mp_clear(&n);
    mp_clear(&e);
    mp_clear(&v);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static PRCallOnceType coBPInit = { 0, 0, 0 };
static PRStatus
init_blinding_params_list(void)
{
    blindingParamsList.lock = PZ_NewLock(nssILockOther);
    if (!blindingParamsList.lock) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return PR_FAILURE;
    }
    PR_INIT_CLIST(&blindingParamsList.head);
    return PR_SUCCESS;
}

static SECStatus
generate_blinding_params(struct RSABlindingParamsStr *rsabp,
                         RSAPrivateKey *key, mp_int *n, unsigned int modLen)
{
    SECStatus rv = SECSuccess;
    mp_int e, k;
    mp_err err = MP_OKAY;
    unsigned char *kb = NULL;
    MP_DIGITS(&e) = 0;
    MP_DIGITS(&k) = 0;
    CHECK_MPI_OK( mp_init(&e) );
    CHECK_MPI_OK( mp_init(&k) );
    SECITEM_TO_MPINT(key->publicExponent, &e);
    /* generate random k < n */
    kb = PORT_Alloc(modLen);
    if (!kb) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	goto cleanup;
    }
    CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
    CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
    /* k < n */
    CHECK_MPI_OK( mp_mod(&k, n, &k) );
    /* f = k**e mod n */
    CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
    /* g = k**-1 mod n */
    CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
    /* Initialize the counter for this (f, g) */
    rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
cleanup:
    if (kb)
	PORT_ZFree(kb, modLen);
    mp_clear(&k);
    mp_clear(&e);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static SECStatus
init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
                     mp_int *n, unsigned int modLen)
{
    SECStatus rv = SECSuccess;
    mp_err err = MP_OKAY;
    MP_DIGITS(&rsabp->f) = 0;
    MP_DIGITS(&rsabp->g) = 0;
    /* initialize blinding parameters */
    CHECK_MPI_OK( mp_init(&rsabp->f) );
    CHECK_MPI_OK( mp_init(&rsabp->g) );
    /* List elements are keyed using the modulus */
    SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
    CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
    return SECSuccess;
cleanup:
    mp_clear(&rsabp->f);
    mp_clear(&rsabp->g);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static SECStatus
get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
                    mp_int *f, mp_int *g)
{
    SECStatus rv = SECSuccess;
    mp_err err = MP_OKAY;
    int cmp;
    PRCList *el;
    struct RSABlindingParamsStr *rsabp = NULL;
    /* Init the list if neccessary (the init function is only called once!) */
    if (blindingParamsList.lock == NULL) {
	if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
	    PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
	    return SECFailure;
	}
    }
    /* Acquire the list lock */
    PZ_Lock(blindingParamsList.lock);
    /* Walk the list looking for the private key */
    for (el = PR_NEXT_LINK(&blindingParamsList.head);
         el != &blindingParamsList.head;
         el = PR_NEXT_LINK(el)) {
	rsabp = (struct RSABlindingParamsStr *)el;
	cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
	if (cmp == 0) {
	    /* Check the usage counter for the parameters */
	    if (--rsabp->counter <= 0) {
		/* Regenerate the blinding parameters */
		CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
	    }
	    /* Return the parameters */
	    CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
	    CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
	    /* Now that the params are located, release the list lock. */
	    PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
	    return SECSuccess;
	} else if (cmp > 0) {
	    /* The key is not in the list.  Break to param creation. */
	    break;
	}
    }
    /* At this point, the key is not in the list.  el should point to the
    ** list element that this key should be inserted before.  NOTE: the list
    ** lock is still held, so there cannot be a race condition here.
    */
    rsabp = (struct RSABlindingParamsStr *)
              PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
    if (!rsabp) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	goto cleanup;
    }
    /* Initialize the list pointer for the element */
    PR_INIT_CLIST(&rsabp->link);
    /* Initialize the blinding parameters
    ** This ties up the list lock while doing some heavy, element-specific
    ** operations, but we don't want to insert the element until it is valid,
    ** which requires computing the blinding params.  If this proves costly,
    ** it could be done after the list lock is released, and then if it fails
    ** the lock would have to be reobtained and the invalid element removed.
    */
    rv = init_blinding_params(rsabp, key, n, modLen);
    if (rv != SECSuccess) {
	PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
	goto cleanup;
    }
    /* Insert the new element into the list
    ** If inserting in the middle of the list, el points to the link
    ** to insert before.  Otherwise, the link needs to be appended to
    ** the end of the list, which is the same as inserting before the
    ** head (since el would have looped back to the head).
    */
    PR_INSERT_BEFORE(&rsabp->link, el);
    /* Return the parameters */
    CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
    CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
    /* Release the list lock */
    PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
    return SECSuccess;
cleanup:
    /* It is possible to reach this after the lock is already released.
    ** Ignore the error in that case.
    */
    PZ_Unlock(blindingParamsList.lock);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return SECFailure;
}

/*
** Perform a raw private-key operation
**	Length of input and output buffers are equal to key's modulus len.
*/
static SECStatus
rsa_PrivateKeyOp(RSAPrivateKey *key,
                 unsigned char *output,
                 const unsigned char *input,
                 PRBool check)
{
    unsigned int modLen;
    unsigned int offset;
    SECStatus rv = SECSuccess;
    mp_err err;
    mp_int n, c, m;
    mp_int f, g;
    if (!key || !output || !input) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    /* check input out of range (needs to be in range [0..n-1]) */
    modLen = rsa_modulusLen(&key->modulus);
    offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
    if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    MP_DIGITS(&n) = 0;
    MP_DIGITS(&c) = 0;
    MP_DIGITS(&m) = 0;
    MP_DIGITS(&f) = 0;
    MP_DIGITS(&g) = 0;
    CHECK_MPI_OK( mp_init(&n) );
    CHECK_MPI_OK( mp_init(&c) );
    CHECK_MPI_OK( mp_init(&m) );
    CHECK_MPI_OK( mp_init(&f) );
    CHECK_MPI_OK( mp_init(&g) );
    SECITEM_TO_MPINT(key->modulus, &n);
    OCTETS_TO_MPINT(input, &c, modLen);
    /* If blinding, compute pre-image of ciphertext by multiplying by
    ** blinding factor
    */
    if (nssRSAUseBlinding) {
	CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
	/* c' = c*f mod n */
	CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
    }
    /* Do the private key operation m = c**d mod n */
    if ( key->prime1.len      == 0 ||
         key->prime2.len      == 0 ||
         key->exponent1.len   == 0 ||
         key->exponent2.len   == 0 ||
         key->coefficient.len == 0) {
	CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
    } else if (check) {
	CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
    } else {
	CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
    }
    /* If blinding, compute post-image of plaintext by multiplying by
    ** blinding factor
    */
    if (nssRSAUseBlinding) {
	/* m = m'*g mod n */
	CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
    }
    err = mp_to_fixlen_octets(&m, output, modLen);
    if (err >= 0) err = MP_OKAY;
cleanup:
    mp_clear(&n);
    mp_clear(&c);
    mp_clear(&m);
    mp_clear(&f);
    mp_clear(&g);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

SECStatus
RSA_PrivateKeyOp(RSAPrivateKey *key,
                 unsigned char *output,
                 const unsigned char *input)
{
    return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
}

SECStatus
RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
                              unsigned char *output,
                              const unsigned char *input)
{
    return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
}

static SECStatus
swap_in_key_value(PRArenaPool *arena, mp_int *mpval, SECItem *buffer)
{
    int len;
    mp_err err = MP_OKAY;
    memset(buffer->data, 0, buffer->len);
    len = mp_unsigned_octet_size(mpval);
    if (len <= 0) return SECFailure;
    if ((unsigned int)len <= buffer->len) {
	/* The new value is no longer than the old buffer, so use it */
	err = mp_to_unsigned_octets(mpval, buffer->data, len);
	if (err >= 0) err = MP_OKAY;
	buffer->len = len;
    } else if (arena) {
	/* The new value is longer, but working within an arena */
	(void)SECITEM_AllocItem(arena, buffer, len);
	err = mp_to_unsigned_octets(mpval, buffer->data, len);
	if (err >= 0) err = MP_OKAY;
    } else {
	/* The new value is longer, no arena, can't handle this key */
	return SECFailure;
    }
    return (err == MP_OKAY) ? SECSuccess : SECFailure;
}

SECStatus
RSA_PrivateKeyCheck(RSAPrivateKey *key)
{
    mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n)    = 0;
    MP_DIGITS(&psub1)= 0;
    MP_DIGITS(&qsub1)= 0;
    MP_DIGITS(&e)    = 0;
    MP_DIGITS(&d)    = 0;
    MP_DIGITS(&d_p)  = 0;
    MP_DIGITS(&d_q)  = 0;
    MP_DIGITS(&qInv) = 0;
    MP_DIGITS(&res)  = 0;
    CHECK_MPI_OK( mp_init(&n)    );
    CHECK_MPI_OK( mp_init(&p)    );
    CHECK_MPI_OK( mp_init(&q)    );
    CHECK_MPI_OK( mp_init(&psub1));
    CHECK_MPI_OK( mp_init(&qsub1));
    CHECK_MPI_OK( mp_init(&e)    );
    CHECK_MPI_OK( mp_init(&d)    );
    CHECK_MPI_OK( mp_init(&d_p)  );
    CHECK_MPI_OK( mp_init(&d_q)  );
    CHECK_MPI_OK( mp_init(&qInv) );
    CHECK_MPI_OK( mp_init(&res)  );
    SECITEM_TO_MPINT(key->modulus,         &n);
    SECITEM_TO_MPINT(key->prime1,          &p);
    SECITEM_TO_MPINT(key->prime2,          &q);
    SECITEM_TO_MPINT(key->publicExponent,  &e);
    SECITEM_TO_MPINT(key->privateExponent, &d);
    SECITEM_TO_MPINT(key->exponent1,       &d_p);
    SECITEM_TO_MPINT(key->exponent2,       &d_q);
    SECITEM_TO_MPINT(key->coefficient,     &qInv);
    /* p > q  */
    if (mp_cmp(&p, &q) <= 0) {
	/* mind the p's and q's (and d_p's and d_q's) */
	SECItem tmp;
	mp_exch(&p, &q);
	mp_exch(&d_p,&d_q);
	tmp = key->prime1;
	key->prime1 = key->prime2;
	key->prime2 = tmp;
	tmp = key->exponent1;
	key->exponent1 = key->exponent2;
	key->exponent2 = tmp;
    }
#define VERIFY_MPI_EQUAL(m1, m2) \
    if (mp_cmp(m1, m2) != 0) {   \
	rv = SECFailure;         \
	goto cleanup;            \
    }
#define VERIFY_MPI_EQUAL_1(m)    \
    if (mp_cmp_d(m, 1) != 0) {   \
	rv = SECFailure;         \
	goto cleanup;            \
    }
    /*
     * The following errors cannot be recovered from.
     */
    /* n == p * q */
    CHECK_MPI_OK( mp_mul(&p, &q, &res) );
    VERIFY_MPI_EQUAL(&res, &n);
    /* gcd(e, p-1) == 1 */
    CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
    CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* gcd(e, q-1) == 1 */
    CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
    CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* d*e == 1 mod p-1 */
    CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* d*e == 1 mod q-1 */
    CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /*
     * The following errors can be recovered from.
     */
    /* d_p == d mod p-1 */
    CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
    if (mp_cmp(&d_p, &res) != 0) {
	/* swap in the correct value */
	CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) );
    }
    /* d_q == d mod q-1 */
    CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
    if (mp_cmp(&d_q, &res) != 0) {
	/* swap in the correct value */
	CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) );
    }
    /* q * q**-1 == 1 mod p */
    CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
    if (mp_cmp_d(&res, 1) != 0) {
	/* compute the correct value */
	CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) );
	CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) );
    }
cleanup:
    mp_clear(&n);
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&psub1);
    mp_clear(&qsub1);
    mp_clear(&e);
    mp_clear(&d);
    mp_clear(&d_p);
    mp_clear(&d_q);
    mp_clear(&qInv);
    mp_clear(&res);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

/* cleanup at shutdown */
void RSA_Cleanup(void)
{
    if (!coBPInit.initialized)
	return;

    while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head))
    {
	struct RSABlindingParamsStr * rsabp = (struct RSABlindingParamsStr *)
	    PR_LIST_HEAD(&blindingParamsList.head);
	PR_REMOVE_LINK(&rsabp->link);
	mp_clear(&rsabp->f);
	mp_clear(&rsabp->g);
	SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
	PORT_Free(rsabp);
    }

    if (blindingParamsList.lock)
    {
	PZ_DestroyLock(blindingParamsList.lock);
	blindingParamsList.lock = NULL;
    }

    coBPInit.initialized = 0;
    coBPInit.inProgress = 0;
    coBPInit.status = 0;
}

/*
 * need a central place for this function to free up all the memory that
 * free_bl may have allocated along the way. Currently only RSA does this,
 * so I've put it here for now.
 */
void BL_Cleanup(void)
{
    RSA_Cleanup();
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -