📄 rsa.txt
字号:
SECStatus rv = SECSuccess;
MP_DIGITS(&n) = 0;
MP_DIGITS(&e) = 0;
MP_DIGITS(&v) = 0;
CHECK_MPI_OK( mp_init(&n) );
CHECK_MPI_OK( mp_init(&e) );
CHECK_MPI_OK( mp_init(&v) );
CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
SECITEM_TO_MPINT(key->modulus, &n);
SECITEM_TO_MPINT(key->publicExponent, &e);
/* Perform a public key operation v = m ** e mod n */
CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
if (mp_cmp(&v, c) != 0) {
rv = SECFailure;
}
cleanup:
mp_clear(&n);
mp_clear(&e);
mp_clear(&v);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
static PRCallOnceType coBPInit = { 0, 0, 0 };
static PRStatus
init_blinding_params_list(void)
{
blindingParamsList.lock = PZ_NewLock(nssILockOther);
if (!blindingParamsList.lock) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return PR_FAILURE;
}
PR_INIT_CLIST(&blindingParamsList.head);
return PR_SUCCESS;
}
static SECStatus
generate_blinding_params(struct RSABlindingParamsStr *rsabp,
RSAPrivateKey *key, mp_int *n, unsigned int modLen)
{
SECStatus rv = SECSuccess;
mp_int e, k;
mp_err err = MP_OKAY;
unsigned char *kb = NULL;
MP_DIGITS(&e) = 0;
MP_DIGITS(&k) = 0;
CHECK_MPI_OK( mp_init(&e) );
CHECK_MPI_OK( mp_init(&k) );
SECITEM_TO_MPINT(key->publicExponent, &e);
/* generate random k < n */
kb = PORT_Alloc(modLen);
if (!kb) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto cleanup;
}
CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
/* k < n */
CHECK_MPI_OK( mp_mod(&k, n, &k) );
/* f = k**e mod n */
CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
/* g = k**-1 mod n */
CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
/* Initialize the counter for this (f, g) */
rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
cleanup:
if (kb)
PORT_ZFree(kb, modLen);
mp_clear(&k);
mp_clear(&e);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
static SECStatus
init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
mp_int *n, unsigned int modLen)
{
SECStatus rv = SECSuccess;
mp_err err = MP_OKAY;
MP_DIGITS(&rsabp->f) = 0;
MP_DIGITS(&rsabp->g) = 0;
/* initialize blinding parameters */
CHECK_MPI_OK( mp_init(&rsabp->f) );
CHECK_MPI_OK( mp_init(&rsabp->g) );
/* List elements are keyed using the modulus */
SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
return SECSuccess;
cleanup:
mp_clear(&rsabp->f);
mp_clear(&rsabp->g);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
static SECStatus
get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
mp_int *f, mp_int *g)
{
SECStatus rv = SECSuccess;
mp_err err = MP_OKAY;
int cmp;
PRCList *el;
struct RSABlindingParamsStr *rsabp = NULL;
/* Init the list if neccessary (the init function is only called once!) */
if (blindingParamsList.lock == NULL) {
if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
}
/* Acquire the list lock */
PZ_Lock(blindingParamsList.lock);
/* Walk the list looking for the private key */
for (el = PR_NEXT_LINK(&blindingParamsList.head);
el != &blindingParamsList.head;
el = PR_NEXT_LINK(el)) {
rsabp = (struct RSABlindingParamsStr *)el;
cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
if (cmp == 0) {
/* Check the usage counter for the parameters */
if (--rsabp->counter <= 0) {
/* Regenerate the blinding parameters */
CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
}
/* Return the parameters */
CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
/* Now that the params are located, release the list lock. */
PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
return SECSuccess;
} else if (cmp > 0) {
/* The key is not in the list. Break to param creation. */
break;
}
}
/* At this point, the key is not in the list. el should point to the
** list element that this key should be inserted before. NOTE: the list
** lock is still held, so there cannot be a race condition here.
*/
rsabp = (struct RSABlindingParamsStr *)
PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
if (!rsabp) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto cleanup;
}
/* Initialize the list pointer for the element */
PR_INIT_CLIST(&rsabp->link);
/* Initialize the blinding parameters
** This ties up the list lock while doing some heavy, element-specific
** operations, but we don't want to insert the element until it is valid,
** which requires computing the blinding params. If this proves costly,
** it could be done after the list lock is released, and then if it fails
** the lock would have to be reobtained and the invalid element removed.
*/
rv = init_blinding_params(rsabp, key, n, modLen);
if (rv != SECSuccess) {
PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
goto cleanup;
}
/* Insert the new element into the list
** If inserting in the middle of the list, el points to the link
** to insert before. Otherwise, the link needs to be appended to
** the end of the list, which is the same as inserting before the
** head (since el would have looped back to the head).
*/
PR_INSERT_BEFORE(&rsabp->link, el);
/* Return the parameters */
CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
/* Release the list lock */
PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
return SECSuccess;
cleanup:
/* It is possible to reach this after the lock is already released.
** Ignore the error in that case.
*/
PZ_Unlock(blindingParamsList.lock);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return SECFailure;
}
/*
** Perform a raw private-key operation
** Length of input and output buffers are equal to key's modulus len.
*/
static SECStatus
rsa_PrivateKeyOp(RSAPrivateKey *key,
unsigned char *output,
const unsigned char *input,
PRBool check)
{
unsigned int modLen;
unsigned int offset;
SECStatus rv = SECSuccess;
mp_err err;
mp_int n, c, m;
mp_int f, g;
if (!key || !output || !input) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* check input out of range (needs to be in range [0..n-1]) */
modLen = rsa_modulusLen(&key->modulus);
offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
MP_DIGITS(&n) = 0;
MP_DIGITS(&c) = 0;
MP_DIGITS(&m) = 0;
MP_DIGITS(&f) = 0;
MP_DIGITS(&g) = 0;
CHECK_MPI_OK( mp_init(&n) );
CHECK_MPI_OK( mp_init(&c) );
CHECK_MPI_OK( mp_init(&m) );
CHECK_MPI_OK( mp_init(&f) );
CHECK_MPI_OK( mp_init(&g) );
SECITEM_TO_MPINT(key->modulus, &n);
OCTETS_TO_MPINT(input, &c, modLen);
/* If blinding, compute pre-image of ciphertext by multiplying by
** blinding factor
*/
if (nssRSAUseBlinding) {
CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
/* c' = c*f mod n */
CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
}
/* Do the private key operation m = c**d mod n */
if ( key->prime1.len == 0 ||
key->prime2.len == 0 ||
key->exponent1.len == 0 ||
key->exponent2.len == 0 ||
key->coefficient.len == 0) {
CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
} else if (check) {
CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
} else {
CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
}
/* If blinding, compute post-image of plaintext by multiplying by
** blinding factor
*/
if (nssRSAUseBlinding) {
/* m = m'*g mod n */
CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
}
err = mp_to_fixlen_octets(&m, output, modLen);
if (err >= 0) err = MP_OKAY;
cleanup:
mp_clear(&n);
mp_clear(&c);
mp_clear(&m);
mp_clear(&f);
mp_clear(&g);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
SECStatus
RSA_PrivateKeyOp(RSAPrivateKey *key,
unsigned char *output,
const unsigned char *input)
{
return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
}
SECStatus
RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
unsigned char *output,
const unsigned char *input)
{
return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
}
static SECStatus
swap_in_key_value(PRArenaPool *arena, mp_int *mpval, SECItem *buffer)
{
int len;
mp_err err = MP_OKAY;
memset(buffer->data, 0, buffer->len);
len = mp_unsigned_octet_size(mpval);
if (len <= 0) return SECFailure;
if ((unsigned int)len <= buffer->len) {
/* The new value is no longer than the old buffer, so use it */
err = mp_to_unsigned_octets(mpval, buffer->data, len);
if (err >= 0) err = MP_OKAY;
buffer->len = len;
} else if (arena) {
/* The new value is longer, but working within an arena */
(void)SECITEM_AllocItem(arena, buffer, len);
err = mp_to_unsigned_octets(mpval, buffer->data, len);
if (err >= 0) err = MP_OKAY;
} else {
/* The new value is longer, no arena, can't handle this key */
return SECFailure;
}
return (err == MP_OKAY) ? SECSuccess : SECFailure;
}
SECStatus
RSA_PrivateKeyCheck(RSAPrivateKey *key)
{
mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
MP_DIGITS(&n) = 0;
MP_DIGITS(&psub1)= 0;
MP_DIGITS(&qsub1)= 0;
MP_DIGITS(&e) = 0;
MP_DIGITS(&d) = 0;
MP_DIGITS(&d_p) = 0;
MP_DIGITS(&d_q) = 0;
MP_DIGITS(&qInv) = 0;
MP_DIGITS(&res) = 0;
CHECK_MPI_OK( mp_init(&n) );
CHECK_MPI_OK( mp_init(&p) );
CHECK_MPI_OK( mp_init(&q) );
CHECK_MPI_OK( mp_init(&psub1));
CHECK_MPI_OK( mp_init(&qsub1));
CHECK_MPI_OK( mp_init(&e) );
CHECK_MPI_OK( mp_init(&d) );
CHECK_MPI_OK( mp_init(&d_p) );
CHECK_MPI_OK( mp_init(&d_q) );
CHECK_MPI_OK( mp_init(&qInv) );
CHECK_MPI_OK( mp_init(&res) );
SECITEM_TO_MPINT(key->modulus, &n);
SECITEM_TO_MPINT(key->prime1, &p);
SECITEM_TO_MPINT(key->prime2, &q);
SECITEM_TO_MPINT(key->publicExponent, &e);
SECITEM_TO_MPINT(key->privateExponent, &d);
SECITEM_TO_MPINT(key->exponent1, &d_p);
SECITEM_TO_MPINT(key->exponent2, &d_q);
SECITEM_TO_MPINT(key->coefficient, &qInv);
/* p > q */
if (mp_cmp(&p, &q) <= 0) {
/* mind the p's and q's (and d_p's and d_q's) */
SECItem tmp;
mp_exch(&p, &q);
mp_exch(&d_p,&d_q);
tmp = key->prime1;
key->prime1 = key->prime2;
key->prime2 = tmp;
tmp = key->exponent1;
key->exponent1 = key->exponent2;
key->exponent2 = tmp;
}
#define VERIFY_MPI_EQUAL(m1, m2) \
if (mp_cmp(m1, m2) != 0) { \
rv = SECFailure; \
goto cleanup; \
}
#define VERIFY_MPI_EQUAL_1(m) \
if (mp_cmp_d(m, 1) != 0) { \
rv = SECFailure; \
goto cleanup; \
}
/*
* The following errors cannot be recovered from.
*/
/* n == p * q */
CHECK_MPI_OK( mp_mul(&p, &q, &res) );
VERIFY_MPI_EQUAL(&res, &n);
/* gcd(e, p-1) == 1 */
CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
VERIFY_MPI_EQUAL_1(&res);
/* gcd(e, q-1) == 1 */
CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
VERIFY_MPI_EQUAL_1(&res);
/* d*e == 1 mod p-1 */
CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
VERIFY_MPI_EQUAL_1(&res);
/* d*e == 1 mod q-1 */
CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
VERIFY_MPI_EQUAL_1(&res);
/*
* The following errors can be recovered from.
*/
/* d_p == d mod p-1 */
CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
if (mp_cmp(&d_p, &res) != 0) {
/* swap in the correct value */
CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) );
}
/* d_q == d mod q-1 */
CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
if (mp_cmp(&d_q, &res) != 0) {
/* swap in the correct value */
CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) );
}
/* q * q**-1 == 1 mod p */
CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
if (mp_cmp_d(&res, 1) != 0) {
/* compute the correct value */
CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) );
CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) );
}
cleanup:
mp_clear(&n);
mp_clear(&p);
mp_clear(&q);
mp_clear(&psub1);
mp_clear(&qsub1);
mp_clear(&e);
mp_clear(&d);
mp_clear(&d_p);
mp_clear(&d_q);
mp_clear(&qInv);
mp_clear(&res);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/* cleanup at shutdown */
void RSA_Cleanup(void)
{
if (!coBPInit.initialized)
return;
while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head))
{
struct RSABlindingParamsStr * rsabp = (struct RSABlindingParamsStr *)
PR_LIST_HEAD(&blindingParamsList.head);
PR_REMOVE_LINK(&rsabp->link);
mp_clear(&rsabp->f);
mp_clear(&rsabp->g);
SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
PORT_Free(rsabp);
}
if (blindingParamsList.lock)
{
PZ_DestroyLock(blindingParamsList.lock);
blindingParamsList.lock = NULL;
}
coBPInit.initialized = 0;
coBPInit.inProgress = 0;
coBPInit.status = 0;
}
/*
* need a central place for this function to free up all the memory that
* free_bl may have allocated along the way. Currently only RSA does this,
* so I've put it here for now.
*/
void BL_Cleanup(void)
{
RSA_Cleanup();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -