📄 rsa.txt
字号:
* The contents of this file are subject to the Mozilla Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1994-2000 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU General Public License Version 2 or later (the
* "GPL"), in which case the provisions of the GPL are applicable
* instead of those above. If you wish to allow use of your
* version of this file only under the terms of the GPL and not to
* allow others to use your version of this file under the MPL,
* indicate your decision by deleting the provisions above and
* replace them with the notice and other provisions required by
* the GPL. If you do not delete the provisions above, a recipient
* may use your version of this file under either the MPL or the
* GPL.
*
*/
/*
* RSA key generation, public key op, private key op.
*
* $Id: rsa.c,v 1.33 2003/12/19 23:50:45 nelsonb%netscape.com Exp $
*/
#include "secerr.h"
#include "prclist.h"
#include "nssilock.h"
#include "prinit.h"
#include "blapi.h"
#include "mpi.h"
#include "mpprime.h"
#include "mplogic.h"
#include "secmpi.h"
#include "secitem.h"
/*
** Number of times to attempt to generate a prime (p or q) from a random
** seed (the seed changes for each iteration).
*/
#define MAX_PRIME_GEN_ATTEMPTS 10
/*
** Number of times to attempt to generate a key. The primes p and q change
** for each attempt.
*/
#define MAX_KEY_GEN_ATTEMPTS 10
#define MAX_RSA_MODULUS 1024 /* bytes, 8k bits */
#define MAX_RSA_EXPONENT 8 /* bytes, 64 bits */
/*
** RSABlindingParamsStr
**
** For discussion of Paul Kocher's timing attack against an RSA private key
** operation, see http://www.cryptography.com/timingattack/paper.html. The
** countermeasure to this attack, known as blinding, is also discussed in
** the Handbook of Applied Cryptography, 11.118-11.119.
*/
struct RSABlindingParamsStr
{
/* Blinding-specific parameters */
PRCList link; /* link to list of structs */
SECItem modulus; /* list element "key" */
mp_int f, g; /* Blinding parameters */
int counter; /* number of remaining uses of (f, g) */
};
/*
** RSABlindingParamsListStr
**
** List of key-specific blinding params. The arena holds the volatile pool
** of memory for each entry and the list itself. The lock is for list
** operations, in this case insertions and iterations, as well as control
** of the counter for each set of blinding parameters.
*/
struct RSABlindingParamsListStr
{
PZLock *lock; /* Lock for the list */
PRCList head; /* Pointer to the list */
};
/*
** The master blinding params list.
*/
static struct RSABlindingParamsListStr blindingParamsList = { 0 };
/* Number of times to reuse (f, g). Suggested by Paul Kocher */
#define RSA_BLINDING_PARAMS_MAX_REUSE 50
/* Global, allows optional use of blinding. On by default. */
/* Cannot be changed at the moment, due to thread-safety issues. */
static PRBool nssRSAUseBlinding = PR_TRUE;
static SECStatus
rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
unsigned int keySizeInBits)
{
mp_int n, d, phi;
mp_int psub1, qsub1, tmp;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
MP_DIGITS(&n) = 0;
MP_DIGITS(&d) = 0;
MP_DIGITS(&phi) = 0;
MP_DIGITS(&psub1) = 0;
MP_DIGITS(&qsub1) = 0;
MP_DIGITS(&tmp) = 0;
CHECK_MPI_OK( mp_init(&n) );
CHECK_MPI_OK( mp_init(&d) );
CHECK_MPI_OK( mp_init(&phi) );
CHECK_MPI_OK( mp_init(&psub1) );
CHECK_MPI_OK( mp_init(&qsub1) );
CHECK_MPI_OK( mp_init(&tmp) );
/* 1. Compute n = p*q */
CHECK_MPI_OK( mp_mul(p, q, &n) );
/* verify that the modulus has the desired number of bits */
if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
PORT_SetError(SEC_ERROR_NEED_RANDOM);
rv = SECFailure;
goto cleanup;
}
/* 2. Compute phi = (p-1)*(q-1) */
CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
/* 3. Compute d = e**-1 mod(phi) */
err = mp_invmod(e, &phi, &d);
/* Verify that phi(n) and e have no common divisors */
if (err != MP_OKAY) {
if (err == MP_UNDEF) {
PORT_SetError(SEC_ERROR_NEED_RANDOM);
err = MP_OKAY; /* to keep PORT_SetError from being called again */
rv = SECFailure;
}
goto cleanup;
}
MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
/* 4. Compute exponent1 = d mod (p-1) */
CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
/* 5. Compute exponent2 = d mod (q-1) */
CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
/* 6. Compute coefficient = q**-1 mod p */
CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
cleanup:
mp_clear(&n);
mp_clear(&d);
mp_clear(&phi);
mp_clear(&psub1);
mp_clear(&qsub1);
mp_clear(&tmp);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
static SECStatus
generate_prime(mp_int *prime, int primeLen)
{
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
unsigned long counter = 0;
int piter;
unsigned char *pb = NULL;
pb = PORT_Alloc(primeLen);
if (!pb) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto cleanup;
}
for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
pb[0] |= 0xC0; /* set two high-order bits */
pb[primeLen-1] |= 0x01; /* set low-order bit */
CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
if (err != MP_NO)
goto cleanup;
/* keep going while err == MP_NO */
}
cleanup:
if (pb)
PORT_ZFree(pb, primeLen);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/*
** Generate and return a new RSA public and private key.
** Both keys are encoded in a single RSAPrivateKey structure.
** "cx" is the random number generator context
** "keySizeInBits" is the size of the key to be generated, in bits.
** 512, 1024, etc.
** "publicExponent" when not NULL is a pointer to some data that
** represents the public exponent to use. The data is a byte
** encoded integer, in "big endian" order.
*/
RSAPrivateKey *
RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
{
unsigned int primeLen;
mp_int p, q, e;
int kiter;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
int prerr = 0;
RSAPrivateKey *key = NULL;
PRArenaPool *arena = NULL;
/* Require key size to be a multiple of 16 bits. */
if (!publicExponent || keySizeInBits % 16 != 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
/* 1. Allocate arena & key */
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
if (!arena) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return NULL;
}
key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
if (!key) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(arena, PR_TRUE);
return NULL;
}
key->arena = arena;
/* length of primes p and q (in bytes) */
primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
MP_DIGITS(&p) = 0;
MP_DIGITS(&q) = 0;
MP_DIGITS(&e) = 0;
CHECK_MPI_OK( mp_init(&p) );
CHECK_MPI_OK( mp_init(&q) );
CHECK_MPI_OK( mp_init(&e) );
/* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
SECITEM_AllocItem(arena, &key->version, 1);
key->version.data[0] = 0;
/* 3. Set the public exponent */
SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
SECITEM_TO_MPINT(*publicExponent, &e);
kiter = 0;
do {
prerr = 0;
PORT_SetError(0);
CHECK_SEC_OK( generate_prime(&p, primeLen) );
CHECK_SEC_OK( generate_prime(&q, primeLen) );
/* Assure q < p */
if (mp_cmp(&p, &q) < 0)
mp_exch(&p, &q);
/* Attempt to use these primes to generate a key */
rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
if (rv == SECSuccess)
break; /* generated two good primes */
prerr = PORT_GetError();
kiter++;
/* loop until have primes */
} while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
if (prerr)
goto cleanup;
MPINT_TO_SECITEM(&p, &key->prime1, arena);
MPINT_TO_SECITEM(&q, &key->prime2, arena);
cleanup:
mp_clear(&p);
mp_clear(&q);
mp_clear(&e);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv && arena) {
PORT_FreeArena(arena, PR_TRUE);
key = NULL;
}
return key;
}
static unsigned int
rsa_modulusLen(SECItem *modulus)
{
unsigned char byteZero = modulus->data[0];
unsigned int modLen = modulus->len - !byteZero;
return modLen;
}
/*
** Perform a raw public-key operation
** Length of input and output buffers are equal to key's modulus len.
*/
SECStatus
RSA_PublicKeyOp(RSAPublicKey *key,
unsigned char *output,
const unsigned char *input)
{
unsigned int modLen, expLen;
mp_int n, e, m, c;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
if (!key || !output || !input) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
MP_DIGITS(&n) = 0;
MP_DIGITS(&e) = 0;
MP_DIGITS(&m) = 0;
MP_DIGITS(&c) = 0;
CHECK_MPI_OK( mp_init(&n) );
CHECK_MPI_OK( mp_init(&e) );
CHECK_MPI_OK( mp_init(&m) );
CHECK_MPI_OK( mp_init(&c) );
modLen = rsa_modulusLen(&key->modulus);
expLen = rsa_modulusLen(&key->publicExponent);
/* 1. Obtain public key (n, e) */
if (expLen > modLen || modLen > MAX_RSA_MODULUS || expLen > MAX_RSA_EXPONENT) {
/* exponent should not be greater than modulus */
PORT_SetError(SEC_ERROR_INVALID_KEY);
rv = SECFailure;
goto cleanup;
}
SECITEM_TO_MPINT(key->modulus, &n);
SECITEM_TO_MPINT(key->publicExponent, &e);
if (e.used > n.used) {
/* exponent should not be greater than modulus */
PORT_SetError(SEC_ERROR_INVALID_KEY);
rv = SECFailure;
goto cleanup;
}
/* 2. Represent message as integer in range [0..n-1] */
CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
/* 3. Compute c = m**e mod n */
#ifdef USE_MPI_EXPT_D
/* XXX see which is faster */
if (MP_USED(&e) == 1) {
CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
} else
#endif
CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
/* 4. result c is ciphertext */
err = mp_to_fixlen_octets(&c, output, modLen);
if (err >= 0) err = MP_OKAY;
cleanup:
mp_clear(&n);
mp_clear(&e);
mp_clear(&m);
mp_clear(&c);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/*
** RSA Private key operation (no CRT).
*/
static SECStatus
rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
unsigned int modLen)
{
mp_int d;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
MP_DIGITS(&d) = 0;
CHECK_MPI_OK( mp_init(&d) );
SECITEM_TO_MPINT(key->privateExponent, &d);
/* 1. m = c**d mod n */
CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
cleanup:
mp_clear(&d);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/*
** RSA Private key operation using CRT.
*/
static SECStatus
rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c)
{
mp_int p, q, d_p, d_q, qInv;
mp_int m1, m2, h, ctmp;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
MP_DIGITS(&p) = 0;
MP_DIGITS(&q) = 0;
MP_DIGITS(&d_p) = 0;
MP_DIGITS(&d_q) = 0;
MP_DIGITS(&qInv) = 0;
MP_DIGITS(&m1) = 0;
MP_DIGITS(&m2) = 0;
MP_DIGITS(&h) = 0;
MP_DIGITS(&ctmp) = 0;
CHECK_MPI_OK( mp_init(&p) );
CHECK_MPI_OK( mp_init(&q) );
CHECK_MPI_OK( mp_init(&d_p) );
CHECK_MPI_OK( mp_init(&d_q) );
CHECK_MPI_OK( mp_init(&qInv) );
CHECK_MPI_OK( mp_init(&m1) );
CHECK_MPI_OK( mp_init(&m2) );
CHECK_MPI_OK( mp_init(&h) );
CHECK_MPI_OK( mp_init(&ctmp) );
/* copy private key parameters into mp integers */
SECITEM_TO_MPINT(key->prime1, &p); /* p */
SECITEM_TO_MPINT(key->prime2, &q); /* q */
SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */
SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
/* 1. m1 = c**d_p mod p */
CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
/* 2. m2 = c**d_q mod q */
CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
/* 3. h = (m1 - m2) * qInv mod p */
CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
/* 4. m = m2 + h * q */
CHECK_MPI_OK( mp_mul(&h, &q, m) );
CHECK_MPI_OK( mp_add(m, &m2, m) );
cleanup:
mp_clear(&p);
mp_clear(&q);
mp_clear(&d_p);
mp_clear(&d_q);
mp_clear(&qInv);
mp_clear(&m1);
mp_clear(&m2);
mp_clear(&h);
mp_clear(&ctmp);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/*
** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in:
** "On the Importance of Eliminating Errors in Cryptographic Computations",
** http://theory.stanford.edu/~dabo/papers/faults.ps.gz
**
** As a defense against the attack, carry out the private key operation,
** followed up with a public key operation to invert the result.
** Verify that result against the input.
*/
static SECStatus
rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c)
{
mp_int n, e, v;
mp_err err = MP_OKAY;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -