📄 hotpower_nrf905.c
字号:
//21IC.bbs 上HotPower的部分Demo, C51环境
//和maochao老师的AVR上的SPI DEMO
/*-----------------------------------------------
nrf905管脚定义
------------------------------------------------*/
sbit TX_EN = P2^6;
sbit TRX_CE = P2^5;
sbit PWR_UP = P2^4;
sbit MISO = P2^3;
sbit MOSI = P2^2;
sbit SCK = P2^1;
sbit CSN = P2^0;
sbit AM = P3^2;
sbit DR = P3^3;
sbit CD = P3^5;
sbit KEY0 = P0^0;
sbit KEY1 = P0^1;
sbit KEY2 = P0^2;
sbit KEY3 = P0^3;
sbit LED0 = P0^4;
sbit LED1 = P0^5;
sbit LED2 = P0^6;
sbit LED3 = P0^7;
#define Status_AM 0x80
#define Status_DR 0x20
*-------------------------------------------------------------------------------------------
nrf905配置寄存器宏定义
nrf905配置寄存器(10Byte)
工作频率f=(422.4+CH_NO/10)*(1+HFREQ_PLL)MHz
HotPower@126.com 2004.10.14
-------------------------------------------------------------------------------------------*/
#define RX_ADDRESS 0x00000000 //接收有效地址(本方)
#define TX_ADDRESS 0x02345678 //发送有效地址(对方)
#define CH_NO_FREQ_422_4MHz 0x000 //工作频率422.4MHz(433MHz频段最低频率)
#define CH_NO_FREQ_422_5MHz 0x001 //工作频率422.5MHz
#define CH_NO_FREQ_425_0MHz 0x01a //工作频率425.0MHz
#define CH_NO_FREQ_427_5MHz 0x033 //工作频率427.5MHz
#define CH_NO_FREQ_430_0MHz 0x04c //工作频率430.0MHz
#define CH_NO_FREQ_433_0MHz 0x06a //工作频率433.0MHz(433MHz频段基准频率)
#define CH_NO_FREQ_433_1MHz 0x06b //工作频率433.1MHz
#define CH_NO_FREQ_433_2MHz 0x06c //工作频率433.2MHz
#define CH_NO_FREQ_434_7MHz 0x07b //工作频率434.7MHz
#define CH_NO_FREQ_473_5MHz 0x1ff //工作频率473.5MHz(433MHz频段最高频率)
#define CH_NO_FREQ_844_8MHz 0x000 //工作频率844.8MHz(868MHz频段最低频率)
#define CH_NO_FREQ_862_0MHz 0x056 //工作频率862.0MHz
#define CH_NO_FREQ_868_0MHz 0x074 //工作频率868.0MHz(868MHz频段基准频率)
#define CH_NO_FREQ_868_2MHz 0x075 //工作频率868.2MHz
#define CH_NO_FREQ_868_4MHz 0x076 //工作频率868.4MHz
#define CH_NO_FREQ_869_8MHz 0x07d //工作频率869.8MHz
#define CH_NO_FREQ_895_8MHz 0x0ff //工作频率895.8MHz
#define CH_NO_FREQ_896_0MHz 0x100 //工作频率896.0MHz
#define CH_NO_FREQ_900_0MHz 0x114 //工作频率900.0MHz
#define CH_NO_FREQ_902_2MHz 0x11f //工作频率902.2MHz
#define CH_NO_FREQ_902_4MHz 0x120 //工作频率902.4MHz
#define CH_NO_FREQ_915_0MHz 0x15f //工作频率915.0MHz(915MHz频段基准频率)
#define CH_NO_FREQ_927_8MHz 0x19f //工作频率927.8MHz
#define CH_NO_FREQ_947_0MHz 0x1ff //工作频率947.0MHz(915MHz频段最高频率)
#define CH_NO_FREQ CH_NO_FREQ_430_0MHz //工作频率433.0MHz
#define CH_NO_BYTE CH_NO_FREQ & 0xff //工作频率低8位 Byte0 01101100
#define AUTO_RETRAN 0x20 //重发数据包 Byte1.5 0
#define RX_RED_PWR 0x10 //接收低功耗模式 Byte1.4 0
#define PA_PWR__10dBm 0x00 //输出功率-10dBm Byte1.3~2 00
#define PA_PWR_2dBm 0x04 //输出功率+2dBm Byte1.3~2
#define PA_PWR_6dBm 0x08 //输出功率+6dBm Byte1.3~2
#define PA_PWR_10dBm 0x0c //输出功率+10dBm Byte1.3~2
#define HFREQ_PLL_433MHz 0x00 //工作在433MHz频段 Byte1.1 0
#define HFREQ_PLL_868MHz 0x02 //工作在868MHz频段 Byte1.1
#define HFREQ_PLL_915MHz 0x02 //工作在915MHz频段 Byte1.1
#define CH_NO_BIT8 CH_NO_FREQ >> 8 //工作频率第9位 Byte1.0 0
#define TX_AFW_1BYTE 1 * 16 //发送地址宽度1字节 Byte2.7~4
#define TX_AFW_2BYTE 2 * 16 //发送地址宽度2字节 Byte2.7~4
#define TX_AFW_3BYTE 3 * 16 //发送地址宽度3字节 Byte2.7~4
#define TX_AFW_4BYTE 4 * 16 //发送地址宽度4字节 Byte2.7~4 100
#define RX_AFW_1BYTE 1 //接收地址宽度1字节 Byte2.3~0
#define RX_AFW_2BYTE 2 //接收地址宽度2字节 Byte2.3~0
#define RX_AFW_3BYTE 3 //接收地址宽度3字节 Byte2.3~0
#define RX_AFW_4BYTE 4 //接收地址宽度4字节 Byte2.3~0 100
#define RX_PW_1BYTE 1 //接收数据宽度1字节 Byte3.5~0
#define RX_PW_32BYTE 32 //接收数据宽度32字节 Byte3.5~0 00100000
#define TX_PW_1BYTE 1 //发送数据宽度1字节 Byte4.5~0
#define TX_PW_32BYTE 32 //发送数据宽度32字节 Byte4.5~0 00100000
#define RX_ADDRESS_0 RX_ADDRESS >> 24 //接收有效地址第1字节 Byte5 11100111
#define RX_ADDRESS_1 (RX_ADDRESS >> 16) & 0xff //接收有效地址第2字节 Byte6 11100111
#define RX_ADDRESS_2 (RX_ADDRESS >> 8) & 0xff //接收有效地址第3字节 Byte7 11100111
#define RX_ADDRESS_3 RX_ADDRESS & 0xff //接收有效地址第4字节 Byte8 11100111
#define CRC_MODE_16BIT 0x80 //CRC16模式 Byte9.7 1
#define CRC_MODE_8BIT 0x00 //CRC8模式 Byte9.7
#define CRC_EN 0x40 //CRC使能 Byte9.6 1
#define CRC16_EN 0xc0 //CRC16模式使能 Byte9.7~6 11
#define CRC8_EN 0x40 //CRC8模式使能 Byte9.7~6
#define XOF_20MHz 0x20 //晶体振荡器频率20MHz Byte9.5~3
#define XOF_16MHz 0x18 //晶体振荡器频率16MHz Byte9.5~3 100
#define XOF_12MHz 0x10 //晶体振荡器频率12MHz Byte9.5~3
#define XOF_8MHz 0x08 //晶体振荡器频率8MHz Byte9.5~3
#define XOF_4MHz 0x00 //晶体振荡器频率4MHz Byte9.5~3
#define UP_CLK_EN 0x40 //输出时钟使能 Byte9.2 1
#define UP_CLK_FREQ_500kHz 0x03 //输出时钟频率500kHz Byte9.1~0 11
#define UP_CLK_FREQ_1MHz 0x02 //输出时钟频率1MHz Byte9.1~0
#define UP_CLK_FREQ_2MHz 0x01 //输出时钟频率2MHz Byte9.1~0
#define UP_CLK_FREQ_4MHz 0x00 //输出时钟频率4MHz Byte9.1~0
#define UP_CLK_EN_500kHz 0x43 //输出时钟频率500kHz Byte9.2~0 111
#define UP_CLK_EN_1MHz 0x42 //输出时钟频率1MHz Byte9.2~0
#define UP_CLK_EN_2MHz 0x41 //输出时钟频率2MHz Byte9.2~0
#define UP_CLK_EN_4MHz 0x40 //输出时钟频率4MHz Byte9.2~0
#define TX_ADDRESS_0 TX_ADDRESS >> 24 //发送有效地址第1字节
#define TX_ADDRESS_1 (TX_ADDRESS >> 16) & 0xff //发送有效地址第2字节
#define TX_ADDRESS_2 (TX_ADDRESS >> 8) & 0xff //发送有效地址第3字节
#define TX_ADDRESS_3 TX_ADDRESS & 0xff //发送有效地址第4字节
/*-----------------------------------------------
nrf905命令控制字
------------------------------------------------*/
#define WC 0x00 // Write configuration register command
#define RC 0x10 // Read configuration register command
#define WTP 0x20 // Write TX Payload command
#define RTP 0x21 // Read TX Payload command
#define WTA 0x22 // Write TX Address command
#define RTA 0x23 // Read TX Address command
#define RRP 0x24 // Read RX Payload command
void Config905(void) using 0//配置nRF905
{
CSN = 0; // Spi enable for write a spi command
SpiReadWrite(WC); // Write config command
SpiReadWrite(CH_NO_BYTE); //中心频率低8位
SpiReadWrite(PA_PWR_10dBm | HFREQ_PLL_433MHz); //发射+10dBm,发射频率433MHz,中心频率第9位=0
SpiReadWrite(TX_AFW_4BYTE | RX_AFW_4BYTE); //接收地址宽度4字节,发送地址宽度4字节
SpiReadWrite(RX_PW_32BYTE); //接收数据宽度32字节
SpiReadWrite(TX_PW_32BYTE); //发送数据宽度32字节
SpiReadWrite(RX_ADDRESS_0); //接收有效地址第1字节
SpiReadWrite(RX_ADDRESS_1); //接收有效地址第2字节
SpiReadWrite(RX_ADDRESS_2); //接收有效地址第3字节
SpiReadWrite(RX_ADDRESS_3); //接收有效地址第4字节
SpiReadWrite(CRC16_EN | XOF_16MHz); //CRC16模式使能,晶体振荡器频率16MHz
CSN = 1; // Disable Spi
}
/*------------------------------------------------
SPI读写一体化函数SpiReadWrite()
入口参数:
val 写入命令或数据
出口参数:
R7 读出数据
------------------------------------------------*/
unsigned char SpiReadWrite(unsigned char val) using 0
{
unsigned char i;
ACC = val;
for (i = 8; i > 0; i --)
{
CY = MISO;//取数据SO
_rlca_();//存数据ACC.0读数据ACC.7同时进行
MOSI = CY;//送数据SI
SCK = 1;//上升沿打入数据
_nop_();
SCK = 0;//下降沿读入数据(首次为假动作)
}
return ACC;
}
//******************************************************
//以下是maochao老师的SPI的Demo
#define SIZE 100
unsigned char SPI_rx_buff[SIZE];
unsigned char SPI_tx_buff[SIZE];
unsigned char rx_wr_index,rx_rd_index,rx_counter,rx_buffer_overflow;
unsigned char tx_wr_index,tx_rd_index,tx_counter,SPI_ok;
#pragma interrupt_handler spi_stc_isr:18
void spi_stc_isr(void)
{
SPI_rx_buff[rx_wr_index] = SPDR; //从ISP口读出收到的字节
SPI_ok = 1; // SPI 空闲
if (++rx_wr_index == SIZE) rx_wr_index = 0; //放入接收缓冲区,并调整队列指针
if (++rx_counter == SIZE)
{
rx_counter = 0;
rx_buffer_overflow = 1;
}
if (tx_counter) //如果发送缓冲区中有待发的数据
{
--tx_counter;
SPDR = SPI_tx_buff[tx_rd_index]; //发送一个字节数据,并调整指针
if (++tx_rd_index == SIZE) tx_rd_index = 0;
SPI_ok = 0; // SPI 发送工作
}
}
unsigned char getSPIchar(void)
{
unsigned char data;
while (rx_counter == 0); //无接收数据,等待
data = SPI_rx_buff[rx_rd_index]; //从接收缓冲区取出一个SPI收到的数据
if (++rx_rd_index == SIZE) rx_rd_index = 0; //调整指针
CLI();
--rx_counter;
SEI();
return data;
}
void putSPIchar(char c)
{
while (tx_counter == SIZE);//发送缓冲区满,等待
CLI();
if (tx_counter || SPI_ok==0 ) //发送缓冲区已中有待发数据
{ //或SPI正在发送数据时
SPI_tx_buffer[tx_wr_index] = c; //将数据放入发送缓冲区排队
if (++tx_wr_index == SIZE) tx_wr_index = 0; //调整指针
++tx_counter;
}
else
{
SPDR = c; // 发送缓冲区中空且SPI口空闲,直接放入SPDR由SIP口发送
SPI_ok = 0; // SPI 发送工作
}
SEI();
}
void spi_init(void)
{
unsigned chat temp;
DDRB |= 0x080; //MISO=input and MOSI,SCK,SS = output
PORTB |= 0x80; //MISO上拉电阻有效
SPCR = 0xD5; //SPI允许,主机模式,MSB,允许SPI中断,极性方式01,1/16系统时钟速率
SPSR = 0x00;
temp = SPSR;
temp = SPDR; //清空SPI,和中断标志,使SPI空闲
SPI_ok = 1; // SPI 空闲
}
void main(void)
{
unsigned char I;
CLI(); //关中断
spi_init(); //初始化SPI接口
SEI(); //开中断
while()
{
putSPIchat(i); //发送一个字节
i++;
getSPIchar(); //接收一个字节(第一个字节为空字节)
………
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -