⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fdqueue.c

📁 apache的软件linux版本
💻 C
字号:
/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */#include "fdqueue.h"struct fd_queue_info_t {    int idlers;    apr_thread_mutex_t *idlers_mutex;    apr_thread_cond_t *wait_for_idler;    int terminated;    int max_idlers;    apr_pool_t        **recycled_pools;    int num_recycled;};static apr_status_t queue_info_cleanup(void *data_){    fd_queue_info_t *qi = data_;    int i;    apr_thread_cond_destroy(qi->wait_for_idler);    apr_thread_mutex_destroy(qi->idlers_mutex);    for (i = 0; i < qi->num_recycled; i++) {        apr_pool_destroy(qi->recycled_pools[i]);    }    return APR_SUCCESS;}apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,                                  apr_pool_t *pool, int max_idlers){    apr_status_t rv;    fd_queue_info_t *qi;    qi = apr_palloc(pool, sizeof(*qi));    memset(qi, 0, sizeof(*qi));    rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,                                 pool);    if (rv != APR_SUCCESS) {        return rv;    }    rv = apr_thread_cond_create(&qi->wait_for_idler, pool);    if (rv != APR_SUCCESS) {        return rv;    }    qi->recycled_pools = (apr_pool_t **)apr_palloc(pool, max_idlers *                                                   sizeof(apr_pool_t *));    qi->num_recycled = 0;    qi->max_idlers = max_idlers;    apr_pool_cleanup_register(pool, qi, queue_info_cleanup,                              apr_pool_cleanup_null);    *queue_info = qi;    return APR_SUCCESS;}apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,                                    apr_pool_t *pool_to_recycle){    apr_status_t rv;    rv = apr_thread_mutex_lock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    AP_DEBUG_ASSERT(queue_info->idlers >= 0);    AP_DEBUG_ASSERT(queue_info->num_recycled < queue_info->max_idlers);    if (pool_to_recycle) {        queue_info->recycled_pools[queue_info->num_recycled++] =            pool_to_recycle;    }    if (queue_info->idlers++ == 0) {        /* Only signal if we had no idlers before. */        apr_thread_cond_signal(queue_info->wait_for_idler);    }    rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    return APR_SUCCESS;}apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,                                          apr_pool_t **recycled_pool){    apr_status_t rv;    *recycled_pool = NULL;    rv = apr_thread_mutex_lock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    AP_DEBUG_ASSERT(queue_info->idlers >= 0);    while ((queue_info->idlers == 0) && (!queue_info->terminated)) {        rv = apr_thread_cond_wait(queue_info->wait_for_idler,                                  queue_info->idlers_mutex);        if (rv != APR_SUCCESS) {            apr_status_t rv2;            rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);            if (rv2 != APR_SUCCESS) {                return rv2;            }            return rv;        }    }    queue_info->idlers--; /* Oh, and idler? Let's take 'em! */    if (queue_info->num_recycled) {        *recycled_pool =            queue_info->recycled_pools[--queue_info->num_recycled];    }    rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    else if (queue_info->terminated) {        return APR_EOF;    }    else {        return APR_SUCCESS;    }}apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info){    apr_status_t rv;    rv = apr_thread_mutex_lock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    queue_info->terminated = 1;    apr_thread_cond_broadcast(queue_info->wait_for_idler);    rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);    if (rv != APR_SUCCESS) {        return rv;    }    return APR_SUCCESS;}/** * Detects when the fd_queue_t is full. This utility function is expected * to be called from within critical sections, and is not threadsafe. */#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)/** * Detects when the fd_queue_t is empty. This utility function is expected * to be called from within critical sections, and is not threadsafe. */#define ap_queue_empty(queue) ((queue)->nelts == 0)/** * Callback routine that is called to destroy this * fd_queue_t when its pool is destroyed. */static apr_status_t ap_queue_destroy(void *data) {    fd_queue_t *queue = data;    /* Ignore errors here, we can't do anything about them anyway.     * XXX: We should at least try to signal an error here, it is     * indicative of a programmer error. -aaron */    apr_thread_cond_destroy(queue->not_empty);    apr_thread_mutex_destroy(queue->one_big_mutex);    return APR_SUCCESS;}/** * Initialize the fd_queue_t. */apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a){    int i;    apr_status_t rv;    if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,                                      APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) {        return rv;    }    if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) {        return rv;    }    queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t));    queue->bounds = queue_capacity;    queue->nelts = 0;    /* Set all the sockets in the queue to NULL */    for (i = 0; i < queue_capacity; ++i)        queue->data[i].sd = NULL;    apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null);    return APR_SUCCESS;}/** * Push a new socket onto the queue. Blocks if the queue is full. Once * the push operation has completed, it signals other threads waiting * in ap_queue_pop() that they may continue consuming sockets. */apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p){    fd_queue_elem_t *elem;    apr_status_t rv;    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    AP_DEBUG_ASSERT(!queue->terminated);    AP_DEBUG_ASSERT(!ap_queue_full(queue));    elem = &queue->data[queue->nelts];    elem->sd = sd;    elem->p = p;    queue->nelts++;    apr_thread_cond_signal(queue->not_empty);    if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    return APR_SUCCESS;}/** * Retrieves the next available socket from the queue. If there are no * sockets available, it will block until one becomes available. * Once retrieved, the socket is placed into the address specified by * 'sd'. */apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p){    fd_queue_elem_t *elem;    apr_status_t rv;    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    /* Keep waiting until we wake up and find that the queue is not empty. */    if (ap_queue_empty(queue)) {        if (!queue->terminated) {            apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);        }        /* If we wake up and it's still empty, then we were interrupted */        if (ap_queue_empty(queue)) {            rv = apr_thread_mutex_unlock(queue->one_big_mutex);            if (rv != APR_SUCCESS) {                return rv;            }            if (queue->terminated) {                return APR_EOF; /* no more elements ever again */            }            else {                return APR_EINTR;            }        }    }     elem = &queue->data[--queue->nelts];    *sd = elem->sd;    *p = elem->p;#ifdef AP_DEBUG    elem->sd = NULL;    elem->p = NULL;#endif /* AP_DEBUG */    rv = apr_thread_mutex_unlock(queue->one_big_mutex);    return rv;}apr_status_t ap_queue_interrupt_all(fd_queue_t *queue){    apr_status_t rv;        if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    apr_thread_cond_broadcast(queue->not_empty);    if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    return APR_SUCCESS;}apr_status_t ap_queue_term(fd_queue_t *queue){    apr_status_t rv;    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    /* we must hold one_big_mutex when setting this... otherwise,     * we could end up setting it and waking everybody up just after a      * would-be popper checks it but right before they block     */    queue->terminated = 1;    if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {        return rv;    }    return ap_queue_interrupt_all(queue);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -