📄 apr_md5.c
字号:
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */ GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */ GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */ GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */ GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */ GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */ GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */ HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */ HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */ HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */ HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */ HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */ HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */ HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */ HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */ HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */ II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */ II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */ II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */ II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */ II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */ II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */ II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */ II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */ II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ memset(x, 0, sizeof(x));}/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is * a multiple of 4. */static void Encode(unsigned char *output, const apr_uint32_t *input, unsigned int len){ unsigned int i, j; apr_uint32_t k; for (i = 0, j = 0; j < len; i++, j += 4) { k = input[i]; output[j] = (unsigned char)(k & 0xff); output[j + 1] = (unsigned char)((k >> 8) & 0xff); output[j + 2] = (unsigned char)((k >> 16) & 0xff); output[j + 3] = (unsigned char)((k >> 24) & 0xff); }}/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is * a multiple of 4. */static void Decode(apr_uint32_t *output, const unsigned char *input, unsigned int len){ unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((apr_uint32_t)input[j]) | (((apr_uint32_t)input[j + 1]) << 8) | (((apr_uint32_t)input[j + 2]) << 16) | (((apr_uint32_t)input[j + 3]) << 24);}#if APR_CHARSET_EBCDICAPU_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate){ xlate_ebcdic_to_ascii = xlate; return APR_SUCCESS;}#endif/* * Define the Magic String prefix that identifies a password as being * hashed using our algorithm. */static const char *apr1_id = "$apr1$";/* * The following MD5 password encryption code was largely borrowed from * the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is * licenced as stated at the top of this file. */static void to64(char *s, unsigned long v, int n){ static unsigned char itoa64[] = /* 0 ... 63 => ASCII - 64 */ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; while (--n >= 0) { *s++ = itoa64[v&0x3f]; v >>= 6; }}APU_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt, char *result, apr_size_t nbytes){ /* * Minimum size is 8 bytes for salt, plus 1 for the trailing NUL, * plus 4 for the '$' separators, plus the password hash itself. * Let's leave a goodly amount of leeway. */ char passwd[120], *p; const char *sp, *ep; unsigned char final[APR_MD5_DIGESTSIZE]; apr_ssize_t sl, pl, i; apr_md5_ctx_t ctx, ctx1; unsigned long l; /* * Refine the salt first. It's possible we were given an already-hashed * string as the salt argument, so extract the actual salt value from it * if so. Otherwise just use the string up to the first '$' as the salt. */ sp = salt; /* * If it starts with the magic string, then skip that. */ if (!strncmp(sp, apr1_id, strlen(apr1_id))) { sp += strlen(apr1_id); } /* * It stops at the first '$' or 8 chars, whichever comes first */ for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) { continue; } /* * Get the length of the true salt */ sl = ep - sp; /* * 'Time to make the doughnuts..' */ apr_md5_init(&ctx);#if APR_CHARSET_EBCDIC apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);#endif /* * The password first, since that is what is most unknown */ apr_md5_update(&ctx, (unsigned char *)pw, strlen(pw)); /* * Then our magic string */ apr_md5_update(&ctx, (unsigned char *)apr1_id, strlen(apr1_id)); /* * Then the raw salt */ apr_md5_update(&ctx, (unsigned char *)sp, sl); /* * Then just as many characters of the MD5(pw, salt, pw) */ apr_md5_init(&ctx1); apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); apr_md5_update(&ctx1, (unsigned char *)sp, sl); apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); apr_md5_final(final, &ctx1); for (pl = strlen(pw); pl > 0; pl -= APR_MD5_DIGESTSIZE) { apr_md5_update(&ctx, final, (pl > APR_MD5_DIGESTSIZE) ? APR_MD5_DIGESTSIZE : pl); } /* * Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); /* * Then something really weird... */ for (i = strlen(pw); i != 0; i >>= 1) { if (i & 1) { apr_md5_update(&ctx, final, 1); } else { apr_md5_update(&ctx, (unsigned char *)pw, 1); } } /* * Now make the output string. We know our limitations, so we * can use the string routines without bounds checking. */ strcpy(passwd, apr1_id); strncat(passwd, sp, sl); strcat(passwd, "$"); apr_md5_final(final, &ctx); /* * And now, just to make sure things don't run too fast.. * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for (i = 0; i < 1000; i++) { apr_md5_init(&ctx1); if (i & 1) { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } else { apr_md5_update(&ctx1, final, APR_MD5_DIGESTSIZE); } if (i % 3) { apr_md5_update(&ctx1, (unsigned char *)sp, sl); } if (i % 7) { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } if (i & 1) { apr_md5_update(&ctx1, final, APR_MD5_DIGESTSIZE); } else { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } apr_md5_final(final,&ctx1); } p = passwd + strlen(passwd); l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4; l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4; l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4; l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4; l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4; l = final[11] ; to64(p, l, 2); p += 2; *p = '\0'; /* * Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); apr_cpystrn(result, passwd, nbytes - 1); return APR_SUCCESS;}#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE)#if defined(APU_CRYPT_THREADSAFE) || !APR_HAS_THREADS || \ defined(CRYPT_R_CRYPTD) || defined(CRYPT_R_STRUCT_CRYPT_DATA)#define crypt_mutex_lock()#define crypt_mutex_unlock()#elif APR_HAVE_PTHREAD_H && defined(PTHREAD_MUTEX_INITIALIZER)static pthread_mutex_t crypt_mutex = PTHREAD_MUTEX_INITIALIZER;static void crypt_mutex_lock(void){ pthread_mutex_lock(&crypt_mutex);}static void crypt_mutex_unlock(void){ pthread_mutex_unlock(&crypt_mutex);}#else#error apr_password_validate() is not threadsafe. rebuild APR without thread support.#endif#endif/* * Validate a plaintext password against a smashed one. Use either * crypt() (if available) or apr_md5_encode(), depending upon the format * of the smashed input password. Return APR_SUCCESS if they match, or * APR_EMISMATCH if they don't. */APU_DECLARE(apr_status_t) apr_password_validate(const char *passwd, const char *hash){ char sample[120];#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE) char *crypt_pw;#endif if (!strncmp(hash, apr1_id, strlen(apr1_id))) { /* * The hash was created using our custom algorithm. */ apr_md5_encode(passwd, hash, sample, sizeof(sample)); } else if (!strncmp(hash, APR_SHA1PW_ID, APR_SHA1PW_IDLEN)) { apr_sha1_base64(passwd, strlen(passwd), sample); } else { /* * It's not our algorithm, so feed it to crypt() if possible. */#if defined(WIN32) || defined(BEOS) || defined(NETWARE) apr_cpystrn(sample, passwd, sizeof(sample) - 1);#elif defined(CRYPT_R_CRYPTD) CRYPTD buffer; crypt_pw = crypt_r(passwd, hash, &buffer); apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);#elif defined(CRYPT_R_STRUCT_CRYPT_DATA) struct crypt_data buffer; /* having to clear this seems bogus... GNU doc is * confusing... user report found from google says * the crypt_data struct had to be cleared to get * the same result as plain crypt() */ memset(&buffer, 0, sizeof(buffer)); crypt_pw = crypt_r(passwd, hash, &buffer); apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);#else /* Do a bit of sanity checking since we know that crypt_r() * should always be used for threaded builds on AIX, and * problems in configure logic can result in the wrong * choice being made. */#if defined(_AIX) && APR_HAS_THREADS#error Configuration error! crypt_r() should have been selected!#endif /* Handle thread safety issues by holding a mutex around the * call to crypt(). */ crypt_mutex_lock(); crypt_pw = crypt(passwd, hash); apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1); crypt_mutex_unlock();#endif } return (strcmp(sample, hash) == 0) ? APR_SUCCESS : APR_EMISMATCH;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -