⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cvector.cpp

📁 一个DXD制作的读取QUAKE的BSP结构的Demo可以参考
💻 CPP
字号:
/*
   Class Name:

      CVector4.

   Created by:

      Allen Sherrod (Programming Ace of www.UltimateGameProgramming.com).

   Description:

      This class represents a 3D (well 4D) point for a vertex's x, y, z, and w axis.
*/


#include"CVector.h"        // CVector4 class.

#define M_PI 3.141592654


CVector4::CVector4()
{
   // Initialize the variables to 0.
   x = y = z = 0.0;
}


CVector4::CVector4(float X, float Y, float Z)
{
   // Initialize the varibles to the data in X, Y, and Z.
   x = X;
   y = Y;
   z = Z;
}


CVector4::CVector4(float X, float Y, float Z, float W)
{
   // Initialize the varibles to the data in X, Y, and Z.
   x = X;
   y = Y;
   z = Z;
   w = W;
}


CVector4::CVector4(const CVector4 &v)
{
   // Initialize this object to v.
   x = v.x;
   y = v.y;
   z = v.z;
   w = v.w;
}


void CVector4::operator =(CVector4 v)
{
   // Make this objects x, y, and z equal to the object on the right of the = sign.
   x = v.x;
   y = v.y;
   z = v.z;
   w = v.w;
}


CVector4 CVector4::operator -(CVector4 v)
{
   // Return the value of this vector - v.
   return CVector4(x - v.x, y - v.y, z - v.z);
}


CVector4 CVector4::operator +(CVector4 v)
{
   // Return the value of this vector + v.
   return CVector4(x + v.x, y + v.y, z + v.z);
}


CVector4 CVector4::operator *(CVector4 v)
{
   // Return the value of this vector * v.
   return CVector4(x * v.x, y * v.y, z * v.z);
}


CVector4 CVector4::operator /(CVector4 v)
{
   // Return the value of this vector / v.
   return CVector4(x / v.x, y / v.y, z / v.z);
}


CVector4 CVector4::operator +(float f)
{
   // Return the value of this vector + f.
   return CVector4(x + f, y + f, z + f);
}


CVector4 CVector4::operator -(float f)
{
   // Return the value of this vector - f.
   return CVector4(x - f, y - f, z - f);
}


CVector4 CVector4::operator *(float f)
{
   // Return the value of this vector * f.
   return CVector4(x * f, y * f, z * f);
}


CVector4 CVector4::operator /(float f)
{
   // Return the value of this vector / f.  We do this by multiplying the recip.
   f = 1/f;

   return CVector4(x * f, y * f, z * f);
}


void CVector4::operator +=(CVector4 v)
{
   // Add this by object v and store results here.
   x += v.x;
   y += v.y;
   z += v.z;
}


void CVector4::operator -=(CVector4 v)
{
   // Subtract this by object v and store results here.
   x -= v.x;
   y -= v.y;
   z -= v.z;
}


void CVector4::operator *=(CVector4 v)
{
   // Mul this by object v and store results here.
   x *= v.x;
   y *= v.y;
   z *= v.z;
}


void CVector4::operator /=(CVector4 v)
{
   // Divide this by object v and store results here.
   x /= v.x;
   y /= v.y;
   z /= v.z;
}


void CVector4::operator +=(float f)
{
   // Add this by object f and store results here.
   x += f;
   y += f;
   z += f;
}


void CVector4::operator -=(float f)
{
   // Subract this by object f and store results here.
   x -= f;
   y -= f;
   z -= f;
}


void CVector4::operator *=(float f)
{
   // Multiply this by object f and store results here.
   x *= f;
   y *= f;
   z *= f;
}


void CVector4::operator /=(float f)
{
   // Divide this by object f and store results here by multiplying by the recip.
   f = 1/f;

   x *= f;
   y *= f;
   z *= f;
}


bool CVector4::operator ==(CVector4 v)
{
   // Return true if all equal each other, false if one or more don't.
   return ((x == v.x) && (y== v.y) && (z == v.z));
}


bool CVector4::operator !=(CVector4 v)
{
   // Return true if one or all don't equal each other, false if they equal.
   return !((x == v.x) && (y== v.y) && (z == v.z));
}


void CVector4::CrossProduct(CVector4 v1, CVector4 v2)
{
   // Get the cross product of v1 and v2 and store it in this vector.
   x = ((v1.y * v2.z) - (v1.z * v2.y));
   y = ((v1.z * v2.x) - (v1.x * v2.z));
   z = ((v1.x * v2.y) - (v1.y * v2.x));
}


void CVector4::CrossProduct3(CVector4 v1, CVector4 v2, CVector4 v3)
{
   // Get the cross product of v1, v2, and v3.
   x = v1.y * v2.z * v3.w +
       v1.z * v2.w * v3.y +
       v1.w * v2.y * v3.z - 
       v1.y * v2.w * v3.z -
       v1.z * v2.y * v3.w -
       v1.w * v2.z * v3.y;

   y = v1.x * v2.w * v3.z +
       v1.z * v2.x * v3.w +
       v1.w * v2.z * v3.x -
       v1.x * v2.z * v3.w -
       v1.z * v2.w * v3.x -
       v1.w * v2.x * v3.z;

   z = v1.x * v2.y * v3.w +
       v1.y * v2.w * v3.x +
       v1.w * v2.x * v3.y -
       v1.x * v2.w * v3.y -
       v1.y * v2.x * v3.w -
       v1.w * v2.y * v3.x;

   w = v1.x * v2.z * v3.y +
       v1.y * v2.x * v3.z +
       v1.z * v2.y * v3.x -
       v1.x * v2.y * v3.z -
       v1.y * v2.z * v3.x -
       v1.z * v2.x * v3.y;
}


float CVector4::DotProduct3(CVector4 v1)
{
   // Get the dot product of v1 and this object and return it.
   return x * v1.x + y * v1.y + z * v1.z;
}


float CVector4::DotProduct4(CVector4 v1)
{
   // Get the dot product of v1 and this object and return it.
   return x * v1.x + y * v1.y + z * v1.z + w * v1.w;
}


float CVector4::GetLength()
{
   // Return the length for this object.
   return (float)sqrt((x * x + y * y + z * z));
}


void CVector4::Normal()
{
   // Reduce this object to a unit vector.
   float lenght = GetLength();

   if(lenght == 0.0f)
      lenght = 1.0f;

   x = x/lenght;
   y = y/lenght;
   z = z/lenght;
   w = w/lenght;
}


void CVector4::Normalize(CVector4 Triangle[])
{
   // Normalize a triangle and store results in this object.
   CVector4 v1, v2;

   v1.x = Triangle[0].x - Triangle[1].x;
   v1.y = Triangle[0].y - Triangle[1].y;
   v1.z = Triangle[0].z - Triangle[1].z;
   v1.w = Triangle[0].w - Triangle[1].w;

   v2.x = Triangle[1].x - Triangle[2].x;
   v2.y = Triangle[1].y - Triangle[2].y;
   v2.z = Triangle[1].z - Triangle[2].z;
   v2.w = Triangle[1].w - Triangle[2].w;

   CrossProduct(v1, v2);
   Normal();
}


void CVector4::CalculateTangentVector(CVector4 Point1, CVector4 Point2, CVector4 Point3,
                                      CVector4 NormalOfA, CTexCoord P1Tex, CTexCoord P2Tex,
                                      CTexCoord P3Tex)
{
   // Get the vector between point 1 and point 2.
   CVector4 VectorAB = Point2 - Point1;

   // Get the vector between point 1 and point 3.
	CVector4 VectorAC = Point3 - Point1;

   // Compute the components of the vectors to the vertex normal of the first point.
   CVector4 ProjAB = VectorAB - (NormalOfA * NormalOfA.DotProduct4(VectorAB));
   CVector4 ProjAC = VectorAC - (NormalOfA * NormalOfA.DotProduct4(VectorAC));

   // Calculate the tu difference of point 2 and 1 then of point 3 and 1.
   float TexCoorUAB = P2Tex.tu - P1Tex.tu;
   float TexCoorUAC = P3Tex.tu - P1Tex.tu;

	// Calculate the tv difference of point 2 and 1 then of point 3 and 1.
   float TexCoorVAB = P2Tex.tv - P1Tex.tv;
   float TexCoorVAC = P3Tex.tv - P1Tex.tv;

   // Switch the sign if the u of point 1 and 3 * v of 1 and 2 is greater than u of 1 and 2 *
   // v of point 1 and 3.
   if((TexCoorUAC * TexCoorVAB) > (TexCoorUAB * TexCoorVAC))
      {
         TexCoorUAC = -TexCoorUAC;
         TexCoorUAB = -TexCoorUAB;
      }

   // Calculate the tangent vector, normalize it, then return it (the normal values).
   CVector4 Tangent = (ProjAB * TexCoorUAC) - (ProjAC * TexCoorUAB);
   Tangent.Normal();

   *this += Tangent;
}


void CVector4::ExtendVertexPos(CVector4 currentVertex, CVector4 lightPos, float Extend)
{
    CVector4 lightDir;  // Direction of the light to the vertex position.
    CVector4 newPos;    // New extended vertex position to make up the shadow volume.

    // Get the light direction from the vertex position and the light position.
    lightDir = currentVertex - lightPos;

    // Now that we know where its going we add it to the position of the light so
    // we get the correct, new position.  We multiply it by a passed it value to
    // give the volume some distance or things won't come out quite as we want.
    newPos = lightPos + lightDir * Extend;

    x = newPos.x;
    y = newPos.y;
    z = newPos.z;
    w = newPos.w;
}


void CVector4::ExtendVertexPos(CVector4 lightPos, float Extend)
{
    CVector4 lightDir;  // Direction of the light to the vertex position.
    CVector4 newPos;    // New extended vertex position to make up the shadow volume.

    // Get the light direction from the vertex position and the light position.
    lightDir = CVector4(x, y, z, w) - lightPos;

    // Now that we know where its going we add it to the position of the light so
    // we get the correct, new position.  We multiply it by a passed it value to
    // give the volume some distance or things won't come out quite as we want.
    newPos = lightPos + lightDir * Extend;

    x = newPos.x;
    y = newPos.y;
    z = newPos.z;
    w = newPos.w;
}


CVector4 CVector4::GetRotatedX(double angle)
{
   float sinAngle = (float)sin(M_PI * angle / 180);
	float cosAngle = (float)cos(M_PI * angle / 180);

	return CVector4(x, y * cosAngle - z * sinAngle, y * sinAngle + z * cosAngle, w);
}


CVector4 CVector4::GetRotatedY(double angle)
{
   float sinAngle = (float)sin(M_PI * angle / 180);
	float cosAngle = (float)cos(M_PI * angle / 180);

	return CVector4(x * cosAngle + z * sinAngle, y, -x * sinAngle + z * cosAngle, w);
}


CVector4 CVector4::GetRotatedZ(double angle)
{
   float sinAngle = (float)sin(M_PI * angle / 180);
	float cosAngle = (float)cos(M_PI * angle / 180);

	return CVector4(x * cosAngle - y * sinAngle, x * sinAngle + y * cosAngle, z, w);

}


CVector4 CVector4::GetRotatedAxis(double angle, CVector4 axis)
{
	if(angle == 0.0) return(*this);

   axis.Normal();

	CVector4 RotationRow1, RotationRow2, RotationRow3;

   double newAngle = M_PI * angle / 180;
	float sinAngle = (float)sin(newAngle);
	float cosAngle = (float)cos(newAngle);
	float oneSubCos = 1.0f - cosAngle;

	RotationRow1.x = (axis.x) * (axis.x) + cosAngle * (1 - (axis.x) * (axis.x));
	RotationRow1.y = (axis.x) * (axis.y) * (oneSubCos) - sinAngle * axis.z;
	RotationRow1.z = (axis.x) * (axis.z) * (oneSubCos) + sinAngle * axis.y;

	RotationRow2.x = (axis.x) * (axis.y) * (oneSubCos) + sinAngle * axis.z;
	RotationRow2.y = (axis.y) * (axis.y) + cosAngle * (1 - (axis.y) * (axis.y));
	RotationRow2.z = (axis.y) * (axis.z) * (oneSubCos) - sinAngle * axis.x;
	
	RotationRow3.x = (axis.x) * (axis.z) * (oneSubCos) - sinAngle * axis.y;
	RotationRow3.y = (axis.y) * (axis.z) * (oneSubCos) + sinAngle * axis.x;
	RotationRow3.z = (axis.z) * (axis.z) + cosAngle * (1 - (axis.z) * (axis.z));

	return CVector4(this->DotProduct3(RotationRow1),
                   this->DotProduct3(RotationRow2),
                   this->DotProduct3(RotationRow3));
}


void CVector4::CalculateBinormalVector(CVector4 tangent, CVector4 normal)
{
   this->CrossProduct(tangent, normal);
}


void CVector4::ClampTo01()
{
   CVector4 temp(x, y, z, w);
   temp.Normal();
   temp = temp * 0.5f + CVector4(0.5f, 0.5f, 0.5f);

   x = temp.x;
   y = temp.y;
   z = temp.z;
}


// Copyright September 2003
// All Rights Reserved!
// Allen Sherrod
// ProgrammingAce@UltimateGameProgramming.com
// www.UltimateGameProgramming.com

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -