📄 cdib.cpp
字号:
// DIB.cpp:类CDib实现文件
#include "stdafx.h"
//#include "DIB.h"
#include "Cdib.h"
#include "math.h"
#define WIDTHBYTES(bits) (((bits) + 31) / 32 * 4)
#define pi 3.14159265359
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr
struct CplexNum
{
double re;
double im;
};
CDib::CDib()
{
m_pDib = NULL;
}
CDib::~CDib()
{
// 如果位图已经被加载,释放内存
if (m_pDib != NULL)
delete []m_pDib;
}
//下面这个函数非常重要,其功能为加载位图,类似于CBitmap类的LoadBitmap函数:
BOOL CDib::Load(const char *pszFilename)
{
CFile cf;
// 打开位图文件
if (!cf.Open(pszFilename, CFile::modeRead))
return (FALSE);
// 获得位图文件大小,并减去BITMAPFILEHEADER的长度
DWORD dwDibSize;
dwDibSize = cf.GetLength() - sizeof(BITMAPFILEHEADER);
// 为DIB位图分配内存
unsigned char *pDib;
pDib = new unsigned char[dwDibSize];
if (pDib == NULL)
return (FALSE);
BITMAPFILEHEADER BFH;
// 读取位图文件数据
try
{
// 文件格式是否正确有效
if ( cf.Read(&BFH, sizeof(BITMAPFILEHEADER)) != sizeof(BITMAPFILEHEADER) ||
BFH.bfType != 'MB' || cf.Read(pDib, dwDibSize) != dwDibSize)
{
delete []pDib;
return (FALSE);
}
}
catch (CFileException *e)
{
e->Delete();
delete []pDib;
return (FALSE);
}
// delete先前加载的位图
if (m_pDib != NULL)
delete m_pDib;
// 将临时Dib数据指针和Dib大小变量赋给类成员变量
m_pDib = pDib;
m_dwDibSize = dwDibSize;
// 为相应类成员变量赋BITMAPINFOHEADER和调色板指针
m_pBIH = (BITMAPINFOHEADER*)m_pDib;
m_pPalette = (RGBQUAD*) &m_pDib[sizeof(BITMAPINFOHEADER)];
m_Width=m_pBIH->biWidth;
m_Height=m_pBIH->biHeight;
// 计算调色板中实际颜色数量
m_nPaletteEntries = 1 << m_pBIH->biBitCount;
if (m_pBIH->biBitCount >8)
m_nPaletteEntries = 0;
else if (m_pBIH->biClrUsed != 0)
m_nPaletteEntries = m_pBIH->biClrUsed;
// 为相应类成员变量赋image data指针
m_pDibBits = &m_pDib[sizeof(BITMAPINFOHEADER) + m_nPaletteEntries * sizeof (RGBQUAD)];
// delete先前的调色板
if (m_Palette.GetSafeHandle() != NULL)
m_Palette.DeleteObject();
// 如果位图中存在调色板,创建LOGPALETTE 及CPalette
if (m_nPaletteEntries != 0)
{
LOGPALETTE *pLogPal = (LOGPALETTE*)new char[sizeof(LOGPALETTE) + m_nPaletteEntries *sizeof(PALETTEENTRY)];
if (pLogPal != NULL)
{
pLogPal->palVersion = 0x300;
pLogPal->palNumEntries = m_nPaletteEntries;
for (int i = 0; i < m_nPaletteEntries; i++)
{
pLogPal->palPalEntry[i].peRed = m_pPalette[i].rgbRed;
pLogPal->palPalEntry[i].peGreen = m_pPalette[i].rgbGreen;
pLogPal->palPalEntry[i].peBlue = m_pPalette[i].rgbBlue;
}
//创建CPalette并释放LOGPALETTE的内存
m_Palette.CreatePalette(pLogPal);
delete []pLogPal;
}
}
return (TRUE);
}
//函数功能:保存位图入BMP文件
BOOL CDib::Save(const char *pszFilename)
{
if (m_pDib == NULL)
return (FALSE);
CFile cf;
if (!cf.Open(pszFilename, CFile::modeCreate | CFile::modeWrite))
return (FALSE);
try
{
BITMAPFILEHEADER BFH;
memset(&BFH, 0, sizeof(BITMAPFILEHEADER));
BFH.bfType = 'MB';
BFH.bfSize = sizeof(BITMAPFILEHEADER) + m_dwDibSize;
BFH.bfOffBits = sizeof(BITMAPFILEHEADER) +
sizeof(BITMAPINFOHEADER) + m_nPaletteEntries *sizeof(RGBQUAD);
cf.Write(&BFH, sizeof(BITMAPFILEHEADER));
cf.Write(m_pDib, m_dwDibSize);
}
catch (CFileException *e)
{
e->Delete();
return (FALSE);
}
return (TRUE);
}
//下面这个函数也非常重要,其功能为在pDC指向的CDC中绘制位图,起点坐标为(nX,nY),绘制宽度和高度为nWidth、nHeight,最后一个参数是光栅模式:
BOOL CDib::Draw(CDC *pDC, int nX, int nY, int nWidth, int nHeight, int mode)
{
if (m_pDib == NULL)
return (FALSE);
// 获取位图宽度和高度赋值
if (nWidth == - 1)
nWidth = m_pBIH->biWidth;
if (nHeight == - 1)
nHeight = m_pBIH->biHeight;
// 绘制位图
StretchDIBits(pDC->m_hDC, nX, nY, nWidth, nHeight, 0, 0, m_pBIH->biWidth, m_pBIH->biHeight, m_pDibBits, (BITMAPINFO*)m_pBIH, BI_RGB, mode);
return (TRUE);
}
//函数功能:设置调色板
BOOL CDib::SetPalette(CDC *pDC)
{
if (m_pDib == NULL)
return (FALSE);
// 检查当前是否有一个调色板句柄,对于大于256色的位图,为NULL
if (m_Palette.GetSafeHandle() == NULL)
return (TRUE);
// 选择调色板,接着实施之,最后恢复老的调色板
CPalette *pOldPalette;
pOldPalette = pDC->SelectPalette(&m_Palette, FALSE);
pDC->RealizePalette();
pDC->SelectPalette(pOldPalette, FALSE);
return (TRUE);
}
BOOL CDib::Getsize(LONG * width,LONG * height)
{
if (m_pDib == NULL)
return (FALSE);
*width = m_pBIH->biWidth;
*height = m_pBIH->biHeight;
return TRUE;
}
BOOL CDib::Inverse()
{
int i,j;
unsigned char* rong;
for(i=0;i<=m_Height;i++)
{
for(j=0;j<m_Width;j++)
{
rong=m_pDibBits+m_Width*(m_Height-1-i)+j;
*rong=255-*rong;
}
}
return TRUE;
}
BOOL CDib::LinearTrans(int lowvalue,int highvalue)
{
int i,j;
unsigned char* rong;
BYTE myData[255];
for(i=0;i<=lowvalue;i++)
{
myData[i]=0;
}
for(;i<highvalue&&i>lowvalue;i++)
{
myData[i]=(BYTE)((i-lowvalue)*255/(highvalue-lowvalue));
}
for(;i>=255;i++)
{
myData[i]=255;
}
for(i=0;i<m_Height;i++)
{
for(j=0;j<m_Width;j++)
{
rong=m_pDibBits+m_Width*(m_Height-1-i)+j;
*rong=myData[*rong];
}
}
return TRUE;
}
BOOL CDib::GrayEqualize()
{
long i; //行循环变量
long j; //列循环变量
unsigned char* lpSrcUnChr; //指向像素的指针
BYTE bGrayMap[256];// 灰度映射
long lGrayNum[256];// 灰度映射
for (i = 0; i < 256; i ++)// 置0
{
lGrayNum[i] = 0;
}
for (i = 0; i < m_Height; i ++)// 各灰度值计数
{
for (j = 0; j < m_Width; j ++)
{
lpSrcUnChr=(unsigned char*)m_pDibBits + m_Width * i + j;
lGrayNum[*(lpSrcUnChr)]++;// 加1
}
}
for (i = 0; i < 256; i++)// 计算灰度映射表
{
long varLong; //临时变量
varLong = 0;// 初始为0
for (j = 0; j <= i ; j++)
{
varLong += lGrayNum[j];
}
bGrayMap[i] = (BYTE) (varLong * 255 / m_Height / m_Width);// 计算对应的新灰度值
}
for(i = 0; i < m_Height; i++)// 行
{
for(j = 0; j < m_Width; j++)// 列
{
// 指向DIB第i行,第j个像素的指针(unsigned char*)
lpSrcUnChr= (unsigned char*)m_pDibBits + m_Width * (m_Height - 1 - i) + j;
*lpSrcUnChr= bGrayMap[*lpSrcUnChr];// 计算新的灰度值
}
}
return TRUE;
}
BOOL CDib::Filter()
{
int m;
int i,j,madom,xx,yy,chg,medi;
int mado[1000];
BYTE *MY=new BYTE[m_Width*m_Height];
unsigned char* rong=m_pDibBits;
int size=m_Width*m_Height;
memset(MY,255,size);
for(j=1;j<m_Height-1;j++)
{
for(i=1;i<m_Width-1;i++)
{
m=0;
for(yy=j-1;yy<=j+1;yy++)
for(xx=i-1;xx<=i+1;xx++)
{
mado[m]=rong[yy*m_Width+xx];
m++;
}
do{
chg=0;
for(m=0;m<8;m++)
{
if(mado[m]<mado[m+1])
{
madom=mado[m];
mado[m]=mado[m+1];
mado[m+1]=madom;
chg=1;
}
}
}while(chg==1);
medi=mado[4];
MY[j*m_Width+i]=medi;
}
}
memcpy(rong,MY,size);
delete MY;
return TRUE;
}
BOOL CDib::Laplace()
{
int averg;
int i,j;
BYTE *MY=new BYTE[m_Width*m_Height];
unsigned char* rong=m_pDibBits;
int size=m_Width*m_Height;
memset(MY,255,size);
for(j=1;j<m_Height-1;j++)
{
for(i=1;i<m_Width-1;i++)
{
averg=0;
averg= (int)(rong[j*m_Width+(i+1)]+rong[j*m_Width+i-1]+rong[(j+1)*m_Width+i]+rong[(j-1)*m_Width+i]+rong[(j-1)*m_Width+i+1]+rong[(j+1)*m_Width+i+1]+rong[(j-1)*m_Width+i-1]+rong[(j+1)*m_Width+i-1]-8*rong[j*m_Width+i]);
averg=abs(averg);
MY[j*m_Width+i]=averg;
}
}
memcpy(rong,MY,size);
delete MY;
return TRUE;
}
BOOL CDib::Reinforce()
{
int averg;
int i,j;
BYTE *MY=new BYTE[m_Width*m_Height];
unsigned char* rong=m_pDibBits;
int size=m_Width*m_Height;
memset(MY,255,size);
for(j=1;j<m_Height-1;j++)
{
for(i=1;i<m_Width-1;i++)
{
averg=0;
//averg=rong[j*m_Width+i]-(int)(rong[j*m_Width+(i+1)]+rong[j*m_Width+i-1]+rong[(j+1)*m_Width+i]+rong[(j-1)*m_Width+i]-4*rong[j*m_Width+i]);
averg= (int)(rong[j*m_Width+(i+1)]+rong[j*m_Width+i-1]+rong[(j+1)*m_Width+i]+rong[(j-1)*m_Width+i]+rong[(j-1)*m_Width+i+1]+rong[(j+1)*m_Width+i+1]+rong[(j-1)*m_Width+i-1]+rong[(j+1)*m_Width+i-1]-9*rong[j*m_Width+i]);
averg=abs(averg);
MY[j*m_Width+i]=averg;
}
}
memcpy(rong,MY,size);
delete MY;
return TRUE;
}
BOOL CDib::Robert()
{
int averg;
int i,j;
BYTE *MY=new BYTE[m_Width*m_Height];
unsigned char* rong=m_pDibBits;
int size=m_Width*m_Height;
memset(MY,255,size);
for(i=1;i<m_Height-1;i++)
{
for(j=1;j<m_Width-1;j++)
{
averg=0;
//rong=(unsigned char*)m_pDibBits+m_Width*(m_Height-1-i)+j;
//averg=(int)sqrt((rong[i*m_Width+j]-rong[(i+1)*m_Width+j+1])*(rong[i*m_Width+j]-rong[(i+1)*m_Width+j+1])+(rong[i*m_Width+j+1]-rong[(i+1)*m_Width+j])*(rong[i*m_Width+j+1]-rong[(i+1)*m_Width+j]));
averg=(int)abs((rong[(i+1)*m_Width+j+1]-rong[(i+1)*m_Width+j-1])+(rong[i*m_Width+j+1]-rong[i*m_Width+j-1])+(rong[(i-1)*m_Width+j+1]-rong[(i-1)*m_Width+j-1]))+abs((rong[(i+1)*m_Width+j-1]-rong[(i-1)*m_Width+j-1])+(rong[(i+1)*m_Width+j]-rong[(i-1)*m_Width+j])+(rong[(i+1)*m_Width+j+1]-rong[(i-1)*m_Width+j+1]));
MY[i*m_Width+j]=averg;
}
}
memcpy(rong,MY,size);
delete MY;
return TRUE;
}
CplexNum Add(CplexNum c1,CplexNum c2)
{
CplexNum c;
c.re=c1.re+c2.re;
c.im=c1.im+c2.im;
return c;
}
CplexNum Sub(CplexNum c1,CplexNum c2)
{
CplexNum c;
c.re=c1.re-c2.re;
c.im=c1.im-c2.im;
return c;
}
CplexNum Mul(CplexNum c1,CplexNum c2)
{
CplexNum c;
c.re=c1.re*c2.re-c1.im*c2.im;
c.im=c1.re*c2.im+c2.re*c1.im;
return c;
}
/*************************************************************************
* 函数名称:FastFourierTran(CplexNum * pTd, CplexNum* pFd, int power)
* 函数参数:
* CplexNum * pTd,指向时域数组的指针
* CplexNum * pFd,指向频域数组的指针
* int power,2的幂数,即迭代次数
* 函数类型:void
函数功能:用来实现快速付立叶变换
************************************************************************/
void FastFourierTran(CplexNum * pTd, CplexNum * pFd, int power)
{
long i; //行循环变量
long j; //列循环变量
long dotCount;// 付立叶变换点数
int k;// 循环变量
int bfsize,p;// 中间变量
double angle;// 角度
CplexNum *pWn,*temReg1,*temReg2,*temReg;
dotCount= 1 <<power;// 计算付立叶变换点数
pWn= new CplexNum[sizeof(CplexNum)*dotCount/ 2];// 分配运算所需存储器
temReg1 = new CplexNum[sizeof(CplexNum)*dotCount];
temReg2 = new CplexNum[sizeof(CplexNum)*dotCount];
for(i = 0; i < dotCount/ 2; i++)// 计算加权系数
{
angle = -i * pi* 2 / dotCount;
pWn[i].re = cos(angle);
pWn[i].im=sin(angle);
}
memcpy(temReg1, pTd, sizeof(CplexNum)*dotCount);// 将时域点写入temReg1
for(k = 0; k < power; k++)// 采用蝶形算法进行快速付立叶变换
{
for(j = 0; j < 1 << k; j++)
{
bfsize = 1 << (power-k);
for(i = 0; i < bfsize / 2; i++)
{
p = j * bfsize;
temReg2[i+p]=Add(temReg1[i+p],temReg1[i+p+bfsize/2]);
temReg2[i+p+bfsize/2]=Mul(Sub(temReg1[i+p],temReg1[i+p+bfsize/2]),
pWn[i*(1<<k)]);
}
}
temReg = temReg1;
temReg1 = temReg2;
temReg2 = temReg;
}
for(j = 0; j <dotCount; j++)// 重新排序
{
p = 0;
for(i = 0; i <power; i++)
{
if (j&(1<<i))
{
p+=1<<(power-i-1);
}
}
pFd[j]=temReg1[p];
}
delete pWn;// 释放内存
delete temReg1;
delete temReg2;
}
/*void Fourier(CplexNum * pTd, int lWidth, int lHeight, CplexNum * pFd)
{
// 循环控制变量
int j;
int i;
// 进行傅立叶变换的宽度和高度,(2的整数次幂)
// 图象的宽度和高度不一定为2的整数次幂
int wid=1;
int hei=1;
int widpor=0,heiPor=0;//2的幂数
unsigned char* rong;
unsigned char* p;
long lLineBytes=WIDTHBYTES(m_Width*8);
while(wid * 2 <= lWidth)// 计算进行付立叶变换的宽度和高度(2的整数次方)
{
wid *= 2;
widpor++;
}
while(hei * 2 <= lHeight)
{
hei *= 2;
heiPor++;
}
for (j=0;j<hei;j++)
{
for (i=0;i<wid;i++)
{
p=rong+lLineBytes*(m_Height-j-1)+i;
pTd[i+wid*j].re=*(p);
pTd[i+wid*j].im=0;
}
}
for(i = 0; i < hei; i++)
{
// x方向进行快速傅立叶变换
FastFourierTran(&pTd[wid * i], &pFd[wid * i], widpor);
}
// pFd中目前存储了pTd经过行变换的结果
// 为了直接利用FastFourierTran,需要把pFd的二维数据转置,再一次利用FastFourierTran进行
// 傅立叶行变换(实际上相当于对列进行傅立叶变换)
for(i = 0; i < hei; i++)
{
for(j = 0; j < wid; j++)
{
pTd[hei * j + i] = pFd[wid * i + j];
}
}
for(j = 0; j < wid; j++)
{
// 对x方向进行快速傅立叶变换,实际上相当于对原来的图象数据进行列方向的
// 傅立叶变换
FastFourierTran(&pTd[j * hei], &pFd[j * hei], heiPor);
}
// pFd中目前存储了pTd经过二维傅立叶变换的结果,但是为了方便列方向
// 的傅立叶变换,对其进行了转置,现在把结果转置回来
for(i = 0; i < hei; i++)
{
for(j = 0; j < wid; j++)
{
pTd[wid * i + j] = pFd[hei * j + i];
}
}
memcpy(pTd, pFd, sizeof(CplexNum) * hei * wid );
}*/
BOOL CDib::FourierTransform()///没有进行平移的图像
{
// 循环控制变量
int j;
int i;
// 进行傅立叶变换的宽度和高度,(2的整数次幂)
// 图象的宽度和高度不一定为2的整数次幂
int wid=1;
int hei=1;
int widpor=0,heiPor=0;//2的幂数
unsigned char* rong=m_pDibBits;
unsigned char* p;
long lLineBytes=WIDTHBYTES(m_Width*8);
double temp;//中间变量
while(wid * 2 <= m_Width)// 计算进行付立叶变换的宽度和高度(2的整数次方)
{
wid *= 2;
widpor++;
}
while(hei * 2 <= m_Height)
{
hei *= 2;
heiPor++;
}
CplexNum *pTd = new CplexNum[sizeof(CplexNum)*wid * hei];// 分配内存
CplexNum *pFd = new CplexNum[sizeof(CplexNum)*wid * hei];
for (j=0;j<hei;j++)
{
for (i=0;i<wid;i++)
{
p=rong+lLineBytes*(m_Height-j-1)+i;
// rong=m_pDibBits+m_Width*(m_Height-1-i)+j;
pTd[i+wid*j].re=*(p);
pTd[i+wid*j].im=0;
}
}
for(i = 0; i < hei; i++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -