📄 program_4c.m
字号:
% Chapter 4 - Electromagnetic Waves and Optical Resonators.
% Program_4c - Animated bifurcation diagram for a nonlinear optical resonator.
% Copyright Birkhauser 2004. Stephen Lynch.
% Animated bifurcation diagram for a simple fiber ring resonator.
clear
for j = 1:60
F(j) = getframe;
format long;
halfN=7999;N=2*halfN+1;N1=1+halfN;
C=0.345913;
E1(1)=0;kappa=0.001*j;Pmax=120;phi=0;
% Ramp the power up
for n=1:halfN
E2(n+1)=E1(n)*exp(i*(abs(C*E1(n))^2-phi));
E1(n+1)=i*sqrt(1-kappa)*sqrt(n*Pmax/N1)+sqrt(kappa)*E2(n+1);
Esqr(n+1)=abs(E1(n+1))^2;
end
% Ramp the power down
for n=N1:N
E2(n+1)=E1(n)*exp(i*(abs(C*E1(n))^2-phi));
E1(n+1)=i*sqrt(1-kappa)*sqrt(2*Pmax-n*Pmax/N1)+sqrt(kappa)*E2(n+1);
Esqr(n+1)=abs(E1(n+1))^2;
end
for n=1:halfN
Esqr1(n)=Esqr(N+1-n);
ptsup(n)=n*Pmax/N1;
end
% Plot the bifurcation diagrams
fsize=15;
hold
plot(ptsup(1:halfN),Esqr(1:halfN),'.','MarkerSize',1);
plot(ptsup(1:halfN),Esqr1(1:halfN),'.','MarkerSize',1);
xlabel('Input Power','FontSize',fsize);
ylabel('Output Power','FontSize',fsize);
axis([0 120 0 180])
title('Bifurcation Diagram for an Optical Resonator','FontSize',fsize);
F(j) = getframe;
end
movie(F,5)
% End of Program_4c.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -