⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ga.java

📁 用JAVA编写的GA算法 特别的好。欢迎您的使用
💻 JAVA
字号:
/*	Copyright 2006, 2007 Brian Greer	This file is part of the Java NN Trainer.	Java NN Trainer is free software; you can redistribute it and/or modify	it under the terms of the GNU General Public License as published by	the Free Software Foundation; either version 2 of the License, or	(at your option) any later version.	Java NN Trainer is distributed in the hope that it will be useful,	but WITHOUT ANY WARRANTY; without even the implied warranty of	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the	GNU General Public License for more details.	You should have received a copy of the GNU General Public License	along with Java NN Trainer; if not, write to the Free Software	Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA*/package algorithms;import java.util.Random;import java.util.Arrays;public class GA extends Trainer{	public static final int    MAX_POP        =  100;	public static final double MUTATION_RATE  =  0.1;	public static final double CROSSOVER_RATE =  1.0;	private int popSize = MAX_POP;	private double mutationRate = MUTATION_RATE;	private double crossoverRate = CROSSOVER_RATE;	private NeuralNetwork population[] = null;	public GA(int numHidden, double [][] inputs, double [][] targets, double minError){		super(numHidden, inputs, targets, minError);	}	public int getType(){		return Trainer.GA;	}	public void setPopSize(int popSize){		this.popSize = popSize;	}	public void setMutationRate(double mutationRate){		this.mutationRate = mutationRate;	}	public void setCrossoverRate(double crossoverRate){		this.crossoverRate = crossoverRate;	}	public void mutate(NeuralNetwork net){		double [][] inWeights = net.getInWeights();		for(int i = 0; i < numInput; i++)			for(int j = 0; j < numHidden; j++)				inWeights[i][j] += random.nextGaussian();		double [][] outWeights = net.getOutWeights();		for(int i = 0; i < numHidden; i++)			for(int j = 0; j < numOutput; j++)				outWeights[i][j] += random.nextGaussian();	}	public void onePointCrossover(NeuralNetwork net1, NeuralNetwork net2){		int range = numInput * numHidden + numHidden * numOutput;		int point = random.nextInt(range);		int count = 0;		double [][] in1 = net1.getInWeights();		double [][] in2 = net2.getInWeights();		for(int i = 0; i < numInput; i++){			for(int j = 0; j < numHidden; j++, count++){				if(count >= point)					in1[i][j] = in2[i][j];			}		}		double [][] out1 = net1.getOutWeights();		double [][] out2 = net2.getOutWeights();		for(int i = 0; i < numHidden; i++){			for(int j = 0; j < numOutput; j++, count++){				if(count >= point)					out1[i][j] = out2[i][j];			}		}	}	public void twoPointCrossover(NeuralNetwork net1, NeuralNetwork net2){		int range = numInput * numHidden + numHidden * numOutput;		int start = random.nextInt(range);		int end = random.nextInt(range - start) + start;		int count = 0;		double [][] in1 = net1.getInWeights();		double [][] in2 = net2.getInWeights();		for(int i = 0; i < numInput; i++){			for(int j = 0; j < numHidden; j++, count++){				if(count >= start && count <= end)					in1[i][j] = in2[i][j];			}		}		double [][] out1 = net1.getOutWeights();		double [][] out2 = net2.getOutWeights();		for(int i = 0; i < numHidden; i++){			for(int j = 0; j < numOutput; j++, count++){				if(count >= start && count <= end)					out1[i][j] = out2[i][j];			}		}	}	public void uniformCrossover(NeuralNetwork net1, NeuralNetwork net2){		double crossoverRate = 0.01;		double [][] in1 = net1.getInWeights();		double [][] in2 = net2.getInWeights();		for(int i = 0; i < numInput; i++){			for(int j = 0; j < numHidden; j++){				if(random.nextDouble() < crossoverRate)					in1[i][j] = in2[i][j];			}		}		double [][] out1 = net1.getOutWeights();		double [][] out2 = net2.getOutWeights();		for(int i = 0; i < numHidden; i++){			for(int j = 0; j < numOutput; j++){				if(random.nextDouble() < crossoverRate)					out1[i][j] = out2[i][j];			}		}	}	public void crossover(NeuralNetwork net1, NeuralNetwork net2){//		onePointCrossover(net1, net2);//		twoPointCrossover(net1, net2);		uniformCrossover(net1, net2);	}	private void evolve(){		NeuralNetwork newPop[] = new NeuralNetwork[popSize];		int minIndex = 0;		double minFitness = 1000.0;		int maxIndex = 0;		double maxFitness = 0;		double sum = 0.0;		for(int i = 0; i < popSize; i++){			double fitness = population[i].getFitness();			sum += fitness;			if(fitness < minFitness){				minFitness = fitness;				minIndex = i;			}			if(fitness > maxFitness){				maxFitness = fitness;				maxIndex = i;			}		}//		System.err.println("[" + minFitness + ", " + maxFitness + "]");		double [] normals = new double[popSize];		for(int i = 0; i < popSize; i++)			normals[i] = (1.0 - population[i].getFitness()) / sum;		//roulette wheel selection		int numAdded = 0;		while(numAdded < popSize){			for(int i = 0; i < popSize; i++){				double roll = random.nextDouble();				while(roll <= normals[i] && numAdded < popSize){					newPop[numAdded++] = population[i].copy();					roll = random.nextDouble();				}			}		}		for(int i = 0; i < popSize; i++){			//keep best individual			if(i == minIndex)				continue;			population[i] = newPop[i];			if(random.nextDouble() < crossoverRate)				crossover(population[i], newPop[(i + 1) % popSize]);			if(random.nextDouble() < mutationRate)				mutate(population[i]);		}	}	public void run(){		broadcastBegin();		population = new NeuralNetwork[popSize];		for(int i = 0; i < popSize; i++)			population[i] = new NeuralNetwork(numInput, numHidden, numOutput);		double fitness = 20.0;		while(fitness > minError && isRunning){			numGenerations++;			fitness = 10000.0;			int best = 0;			for(int i = 0; i < popSize; i++){				double f = population[i].evaluate(inputs, targets);				if(f < fitness){					fitness = f;					best = i;				}			}			broadcastGenerationComplete(population[best]);			evolve();		}		broadcastEnd();	}}// vim:noet:ts=3:sw=3

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -